首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work from our laboratory (Athenstaedt, K., Zweytick, D., Jandrositz, A., Kohlwein, S. D., and Daum, G. (1999) J. Bacteriol. 181, 6441-6448) showed that the gene product of YMR313c (named Tgl3p) is a component of yeast lipid particles, and deletion of this gene led to an increase in the cellular level of triacylglycerols (TAG). These observations suggested that TGL3 may encode a TAG lipase of Saccharomyces cerevisiae. Here we demonstrate by cell fractionation and by microscopic inspection of a strain bearing a Tgl3p-GFP hybrid that this polypeptide is highly enriched in the lipid particle fraction but virtually absent from other organelles. The entire TAG lipase activity of lipid particles is attributed to Tgl3p, because the activity in this organelle is completely absent in a Deltatgl3 deletion mutant, whereas it is significantly enhanced in a strain overexpressing Tgl3p. A His6-tagged Tgl3p hybrid purified close to homogeneity from a yeast strain overexpressing this fusion protein exhibited high TAG lipase activity. Most importantly, experiments in vivo using the fatty acid synthesis inhibitor cerulenin demonstrated that deletion of TGL3 resulted in a decreased mobilization of TAG from lipid particles. The amino acid sequence deduced from the open reading frame YMR313c contains the consensus sequence motif GXSXG typical for lipolytic enzymes. Otherwise, Tgl3p has no significant sequence homology to other lipases identified so far. In summary, our data identified Tgl3p as a novel yeast TAG lipase at the molecular level and by function in vivo and in vitro.  相似文献   

2.
Based on sequence homology to mammalian acid lipases, yeast reading frame YKL140w was predicted to encode a triacylglycerol (TAG) lipase in yeast and was hence named as TGL1, triglyceride lipase 1. A deletion of TGL1, however, resulted in an increase of the cellular steryl ester content. Fluorescently labeled lipid analogs that become covalently linked to the enzyme active site upon catalysis were used to discriminate between the lipase and esterase activities of Tgl1p. Tgl1p preferred single-chain esterase inhibitors over lipase inhibitors in vitro. Under assay conditions optimal for acid lipases, Tgl1p exhibited steryl esterase activity only and lacked any triglyceride lipase activity. In contrast, at pH 7.4, Tgl1p also exhibited TAG lipase activity; however, steryl ester hydrolase activity was still predominant. Tgl1p localized exclusively to lipid droplets which are the intracellular storage compartment of steryl esters and triacylglycerols in the yeast S. cerevisiae. In a tgl1 deletion mutant, the mobilization of steryl esters in vivo was delayed, but not abolished, suggesting the existence of additional enzymes involved in steryl ester mobilization.  相似文献   

3.
In the yeast, mobilization of triacylglycerols (TAGs) is facilitated by the three TAG lipases Tgl3p, Tgl4p, and Tgl5p. Motif search analysis, however, indicated that Tgl3p and Tgl5p do not only contain the TAG lipase motif GXSXG but also an H-(X)4-D acyltransferase motif. Interestingly, lipid analysis revealed that deletion of TGL3 resulted in a decrease and overexpression of TGL3 in an increase of glycerophospholipids. Similar results were obtained with TGL5. Therefore, we tested purified Tgl3p and Tgl5p for acyltransferase activity. Indeed, both enzymes not only exhibited lipase activity but also catalyzed acylation of lysophosphatidylethanolamine and lysophosphatidic acid, respectively. Experiments using variants of Tgl3p created by site-directed mutagenesis clearly demonstrated that the two enzymatic activities act independently of each other. We also showed that Tgl3p is important for efficient sporulation of yeast cells, but rather through its acyltransferase than lipase activity. In summary, our results demonstrate that yeast Tgl3p and Tgl5p play a dual role in lipid metabolism contributing to both anabolic and catabolic processes.  相似文献   

4.
The Saccharomyces cerevisiae Tgl2 protein shows sequence homology to Pseudomonas triacylglycerol (TAG) lipases, but its role in the yeast lipid metabolism is not known. Using hemagglutinin-tagged Tgl2p purified from yeast, we report that this protein carries a significant lipolytic activity toward long-chain TAG. Importantly, mutant hemagglutinin-Tgl2pS144A, which contains alanine 144 in place of serine 144 in the lipase consensus sequence (G/A)XSXG exhibits no such activity. Although cellular TAG hydrolysis is reduced in the tgl2 deletion mutant, overproduction of Tgl2p in this mutant leads to an increase in TAG degradation in the presence of fatty acid synthesis inhibitor cerulenin, but that of Tgl2pS144A does not. This result demonstrates the lipolytic function of Tgl2p in yeast. Although other yeast TAG lipases are localized to lipid particles, Tgl2p is enriched in the mitochondria. The mitochondrial fraction purified from the TGL2-overexpressing yeast shows a strong lipolytic activity, which was absent in the tgl2 deletion mutant. Therefore, we conclude that Tgl2p is a functional lipase of the yeast mitochondria. By analyzing phenotypic effects of TGL2-deficient yeast, we also find that lipolysis-competent Tgl2p is required for the viability of cells treated with antimitotic drug. The addition of oleic acid, the product of Tgl2p-catalyzed lipolysis, fully complements the antimitotic drug sensitivity of the tgl2 null mutation. Thus, we propose that the mitochondrial Tgl2p-dependent lipolysis is crucial for the survival of cells under antimitotic drug treatment.  相似文献   

5.
Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317–23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301–37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source.  相似文献   

6.
Storage and degradation of triglycerides are essential processes to ensure energy homeostasis and availability of precursors for membrane lipid synthesis. Recent evidence suggests that an emerging class of enzymes containing a conserved patatin domain are centrally important players in lipid degradation. Here we describe the identification and characterization of a major triglyceride lipase of the adipose triglyceride lipase/Brummer family, Tgl4, in the yeast Saccharomyces cerevisiae. Elimination of Tgl4 in a tgl3 background led to fat yeast, rendering growing cells unable to degrade triglycerides. Tgl4 and Tgl3 lipases localized to lipid droplets, independent of each other. Serine 315 in the GXSXG lipase active site consensus sequence of the patatin domain of Tgl4 is essential for catalytic activity. Mouse adipose triglyceride lipase (which also contains a patatin domain but is otherwise highly divergent in primary structure from any yeast protein) localized to lipid droplets when expressed in yeast, and significantly restored triglyceride breakdown in tgl4 mutants in vivo. Our data identify yeast Tgl4 as a functional ortholog of mammalian adipose triglyceride lipase.  相似文献   

7.
We make use of the yeast Saccharomyces cerevisiae as a flexible experimental system to investigate coordinate pathways of neutral lipid synthesis, storage and mobilization with special emphasis on the role of different organelles in these processes. Recently, a number of new gene products involved in triacylglycerol (TAG) and steryl ester (STE) metabolism were identified in our laboratory and by other groups. STE are synthesized by the two STE synthases Are1p and Are2p, whereas TAG are formed mainly through the action of the two TAG synthases Dga1p and Lro1p with minor contributions of Are1p and Are2p. Once formed, TAG and STE are stored in so-called lipid particles. A dga1Deltalro1Deltaare1Deltaare2Delta quadruple mutant which lacks neutral lipid synthesis and is consequently devoid of lipid particles turned out to be a valuable tool for studying the physiological role of storage lipids and lipid particles. Mobilization of neutral lipid depots occurs through catalysis of TAG lipases and STE hydrolases. Three TAG lipases named Tgl3p, Tgl4p and Tgl5p, and three STE hydrolases named Tgl1p, Yeh1p and Yeh2p were recently identified at the molecular level. Although these hydrolases exhibit overlapping function within the enzyme families, they are specific for TAG and STE, respectively. With the exception of Dga1p, whose activity is partially localized to lipid particles, TAG and STE forming enzymes are restricted to the endoplasmic reticulum. TAG lipases and STE hydrolases are components of lipid particles with the exception of Yeh2p, which is plasma membrane located. Thus, neutral lipid metabolism is not only regulated at the enzyme level but also by the distribution of the components to organelles. The fact that neutral lipid homeostasis is linked to a number of cell biological processes confirms the important role of this class of lipids as cellular modulators or effectors.  相似文献   

8.
Tgl3p, Tgl4p and Tgl5p are the major triacylglycerol lipases of the yeast Saccharomyces cerevisiae catalyzing degradation of triacylglycerols stored in lipid droplets. Previous results from our laboratory (Athenstaedt and Daum, 2005, J. Biol. Chem. 280, 37301–37309) demonstrated that a yeast strain lacking all three triacylglycerol lipases accumulates not only triacylglycerols at high amount, but also steryl esters. Here we show a metabolic link between synthesis and mobilization of non-polar lipids. In particular, we demonstrate that a block in tri-acylglycerol degradation in a tgl3?tgl4?tgl5? triple mutant lacking all major triacylglycerol lipases causes marked changes in non-polar lipid synthesis. Under these conditions formation of triacylglycerols is reduced, whereas steryl ester synthesis is enhanced as shown by quantification of non-polar lipids, in vivo labeling of lipids using [14C]oleic acid and [14C]acetic acid as precursors, and enzyme analyses in vitro. In summary, this study demonstrates that triacylglycerol metabolism and steryl ester metabolism are linked processes. The importance of balanced storage and degradation of these components for lipid homeostasis in the yeast is highlighted.  相似文献   

9.
Tgl3p, the major triacylglycerol lipase of the yeast Saccharomyces cerevisiae, is a component of lipid droplets but is also present in the endoplasmic reticulum in a minor amount. Recently, it was shown that this enzyme can also serve as a lysophospholipid acyltransferase (Rajakumari, S., and Daum, G. (2010) Mol. Biol. Cell 21, 501–510). Here, we describe the effects of the presence/absence of triacylglycerols and lipid droplets on the functionality of Tgl3p. In a dga1Δlro1Δare1Δare2Δ quadruple mutant lacking all four triacylglycerol- and steryl ester-synthesizing acyltransferases and consequently the lipid droplets, the gene expression of TGL3 was only slightly altered. In contrast, protein level and stability of Tgl3p were markedly reduced in the absence of lipid droplets. Under these conditions, the enzyme was localized to the endoplasmic reticulum. Even the lack of the substrate, triacylglycerol, affected stability and localization of Tgl3p to some extent. Interestingly, Tgl3p present in the endoplasmic reticulum seems to lack lipolytic as well as acyltransferase activity as shown by enzymatic analysis and lipid profiling. Thus, we propose that the activity of Tgl3p is restricted to lipid droplets, whereas the endoplasmic reticulum may serve as a parking lot for this enzyme.  相似文献   

10.
Lipid droplets are specific organelles for the storage of triacylglycerols and steryl esters. They are surrounded by a phospholipid monolayer with a small but specific set of proteins embedded. Assembly and insertion of proteins into this surface membrane is an intriguing question of lipid droplet biology. To address this question we studied the topology of Tgl3p, the major triacylglycerol lipase of the yeast Saccharomyces cerevisiae, on lipid droplets. Employing the method of limited proteolysis of lipid droplet surface proteins, we found that the C terminus of Tgl3p faces the inside of the organelle, whereas the N terminus is exposed at the cytosolic side of lipid droplets. Detailed analysis of the C terminus revealed a stretch of seven amino acids that are critical for protein stability and functionality. The negative charge of two aspartate residues within this stretch is crucial for lipase activity of Tgl3p. A portion of Tgl3p, which is located to the endoplasmic reticulum, exhibits a different topology. In the phospholipid bilayer of the endoplasmic reticulum the C terminus faces the cytosol, which results in instability of the protein. Thus, the topology of Tgl3p is important for its function and strongly dependent on the membrane environment.  相似文献   

11.
Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called “true” TAG-lipases [EC 3.1.1.3] that have been functionally characterized in model organisms like Arabidopsis thaliana and Saccharomyces cerevisiae. These lipases mediate the first initial step of TAG breakdown from storage lipids. To test whether Tgl1 can act as a TAG-lipase, a His-tagged version was overexpressed in Escherichia coli and the protein indeed showed esterase activity. To identify the TAG degrading function of Tgl1 in P. tricornutum, knock-down mutant strains were created using an antisense RNA approach. In the mutant cell lines the relative tgl1-mRNA-level was reduced up to 20% of that of the wild type, accompanied by a strong increase of TAG in the lipid extracts. In spite of the TAG accumulation, the polar lipid species pattern appeared to be unchanged, confirming the TAG-lipase function of Tgl1.  相似文献   

12.
In the yeast Saccharomyces cerevisiae degradation of steryl esters is catalyzed by the steryl ester hydrolases Tgl1p, Yeh1p and Yeh2p. The two steryl ester hydrolases Tgl1p and Yeh1p localize to lipid droplets, a cell compartment storing steryl esters and triacylglycerols. In the present study we investigated regulatory aspects of these two hydrolytic enzymes, namely the gene expression level, protein amount, stability and enzyme activity of Tgl1p and Yeh1p in strains lacking both or only one of the two major nonpolar lipids, steryl esters and triacylglycerols. In a strain lacking both nonpolar lipids and consequently lipid droplets, Tgl1p as well as Yeh1p were present at low amount, became highly unstable compared to wild-type cells, and lost their enzymatic activity. Under these conditions both steryl ester hydrolases were retained in the endoplasmic reticulum. The lack of steryl esters alone was not sufficient to cause an altered intracellular localization of Tgl1p and Yeh1p. Surprisingly, the stability of Tgl1p and Yeh1p was markedly reduced in a strain lacking triacylglycerols, but their capacity to mobilize steryl esters remained unaffected. We also tested a possible cross-regulation of Tgl1p and Yeh1p by analyzing the behavior of each hydrolase in the absence of its counterpart steryl ester hydrolases. In summary, this study demonstrates a strong regulation of the two lipid droplet associated steryl ester hydrolases Tgl1p and Yeh1p due to the presence/absence of their host organelle.  相似文献   

13.
Here we describe the functional relationship between YabG and transglutaminase (Tgl), enzymes that modify the spore coat proteins of Bacillus subtilis. In wild-type spores at 37 degrees C, Tgl mediates the crosslinking of GerQ into higher molecular mass forms; however, some GerQ multimers are found in tgl mutant spores, indicating that Tgl is not essential. Immunoblotting showed that spores isolated from a yabG mutant after sporulation at 37 degrees C contain only very low levels of GerQ multimers. Heat treatment for 20 min at 60 degrees C, which maximally activates the enzymatic activity of Tgl, caused crosslinking of GerQ in isolated yabG spores but not in tgl/yabG double-mutant spores. In addition, the germination frequency of the tgl/yabG spores in the presence of l-alanine with or without heat activation at 60 degrees C was lower than that of wild-type spores. These findings suggest that Tgl cooperates with YabG to mediate the temperature-dependent modification of the coat proteins, a process associated with spore germination in B. subtilis.  相似文献   

14.
Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.  相似文献   

15.
16.
Organisms of the microalgal genus Nannochloropsis produce high levels of triacylglycerols (TAGs), an efficient raw material for biofuels. A complete understanding of the TAG-breakdown pathway is critical for improving the productivity of TAGs to meet future needs. Among a number of lipases annotated as TAG lipase in the genomes of every organism, Arabidopsis SUGAR-DEPENDENT 1 (AtSDP1) lipases are characterized as a type of crucial TAG lipase in plants, similar to ScTgl3–5 in Saccharomyces cerevisiae. Homologs of the AtSDP1 TAG lipases are universally found in the genomes of plants, fungi, and algae. Here we identified two homologs of AtSDP1 TAG lipases in the oleaginous microalga species Nannochloropsis oceanica, NoTGL1 and NoTGL2. We generated single- and double-knockout strains for these lipases by homologous recombination. Whereas overall TAG content in the NoTGL2 single-knockout mutant was identical to that of wild type, the NoTGL1 knockout showed a two-fold increase in TAG content per cell in early log phase under nutrient-sufficient conditions without affecting growth. Homologs of AtSDP1 in S. cerevisiae are localized to the surface of lipid droplets, and AtSDP1 is transported from peroxisomes to the surface of lipid droplets. In contrast, NoTGL1 localized to the endoplasmic reticulum in both Nannochloropsis and yeast. We suggest that homologs of AtSDP1 lipases in Nannochloropsis modulate de novo TAG biosynthesis in the endoplasmic reticulum, unlike the roles of these lipases in other organisms. These results provide important insights into the mechanisms of TAG metabolism catalyzed by homologs of AtSDP1 lipase, which are highly conserved across species.  相似文献   

17.
Oilseed germination is characterized by the mobilization of storage lipids as a carbon and energy source for embryonic growth. In addition to storage lipid degradation in germinating oilseeds via the direct action of a triacylglycerol lipase (TGL) on the storage lipids, a second degradation pathway that is dependent on a specific lipid body trilinoleate 13-lipoxygenase (13-LOX) has been proposed in several plant species. The activity of this specific 13-LOX leads first to the formation of ester lipid hydroperoxides. These hydroperoxy fatty acids are then preferentially cleaved off by a TGL and serve as a substrate for glyoxysomal β-oxidation. As a prerequisite for triacylglycerol (TAG) mobilization, a partial degradation of the phospholipid monolayer and/or membrane proteins of the oil body has been discussed. Evidence has now been found for both processes: partial degradation of the proteins caleosin and oleosin was observed and simultaneously a patatin-like protein together with transient phospholipase (PLase) activity could be detected at the oil body membranes during germination. Moreover, in vitro experiments with isolated oil bodies from mature seeds revealed that the formation of 13-LOX-derived lipid peroxides in lipid body membranes is increased after incubation with the purified recombinant patatin-like protein. These experiments suggest that in vivo the degradation of storage lipids in cucumber cotyledons is promoted by the activity of a specific oil body PLase, which leads to an increased decomposition of the oil body membrane by the 13-LOX and thereby TAGs may be better accessible to LOX and TGL.  相似文献   

18.
Since energy storage is a basic metabolic process, the synthesis of neutral lipids occurs in all kingdoms of life. The yeast, Saccharomyces cerevisiae, widely accepted as a model eukaryotic cell, contains two classes of neutral lipids, namely steryl esters and triacylglycerols. Triacylglycerols are synthesized through two pathways governed by the acyl-CoA diacylglycerol acyltransferase Dga1p and the phospholipid diacylglycerol acyltransferase Lro1p, respectively. Steryl esters are formed by the two steryl ester synthases Are1p and Are2p, two enzymes with overlapping function which also catalyze triacylglycerol formation, although to a minor extent. Storage of neutral lipids is tightly linked to the biogenesis of so called lipid particles. The role of this compartment in lipid homeostasis and its interplay with other organelles involved in neutral lipid dynamics, especially the endoplasmic reticulum and the plasma membrane, are subject of current investigations. In contrast to neutral lipid formation, mobilization of triacylglycerols and steryl esters in yeast are less characterized at the molecular level. Only recently, the triacylglycerol lipase Tgl3p was identified as the first yeast enzyme of this kind by function. Genes and gene products governing steryl ester mobilization still await identification. Besides biochemical properties of enzymes involved in yeast neutral lipid synthesis and degradation, regulatory aspects of these pathways and cell biological consequences of neutral lipid depletion will be discussed in this minireview.  相似文献   

19.
The terminal step of triacylglycerol (TAG) formation in the yeast Saccharomyces cerevisiae is catalyzed by the enzyme acyl-CoA:diacylglycerol acyltransferase (DAGAT). In this study we demonstrate that the gene product of YOR245c, Dga1p, catalyzes a major yeast DAGAT activity which is localized to lipid particles. Enzyme measurements employing a newly established assay containing radioactively labeled diacylglycerol (DAG) as a substrate and unlabeled palmitoyl-CoA as a cosubstrate revealed a 70- to 90-fold enrichment of DAGAT in lipid particles over the homogenate but also a 2- to 3-fold enrichment in endoplasmic reticulum fractions. In a dga1 deletion strain, the DAGAT activity in lipid particles is dramatically reduced, whereas the activity in microsomes is affected only to a minor extent. Thus, we propose the existence of DAGAT isoenzymes in the microsomal fraction. Furthermore, we unveiled an acyl-CoA-independent TAG synthase activity in lipid particles which is distinct from Dga1p and the phosphatidylcholine:DAGAT Lro1p. This acyl-CoA-independent TAG synthase utilizes DAG as an acceptor and free fatty acids as cosubstrates and occurs independently of the acyl-CoA synthases Faa1p to Faa4p. Based on lipid analysis of the respective deletion strains, Lro1p and Dga1p are the major contributors to total cellular TAG synthesis, whereas other TAG synthesizing systems appear to be of minor importance. In conclusion, at least three different pathways are involved in the formation of storage TAG in the yeast.  相似文献   

20.
Synthesis and turnover of non-polar lipids in yeast   总被引:2,自引:1,他引:1  
In the yeast Saccharomyces cerevisiae as in other eukaryotic cells non-polar lipids form a reservoir of energy and building blocks for membrane lipid synthesis. The yeast non-polar lipids, triacylglycerol (TAG) and steryl ester (STE), are synthesized by enzymes with overlapping function. Recently, genes encoding these enzymes were identified and gene products were partially characterized. Once formed, TAG and STE are stored in so-called lipid particles/droplets. This compartment which is reminiscent of mammalian lipoproteins from the structural viewpoint is, however, not only a lipid depot but also an organelle actively contributing to lipid metabolism. Non-polar lipid degrading enzymes, TAG lipases and STE hydrolases, also occur in redundancy in the yeast. These proteins, which are components of the lipid particle surface membrane with the exception of one plasma membrane localized STE hydrolase, mobilize non-polar lipids upon requirement. In this review, we describe the coordinate pathways of non-polar lipid synthesis, storage and mobilization in yeast with special emphasis on the role of the different enzymes and organelles involved in these processes. Moreover, we will discuss non-polar lipid homeostasis and its newly discovered links to various cell biological processes in the yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号