首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hygrolidin family antibiotics showed selective cytotoxicity against both cyclin E- and cyclin A-overexpressing cells. Among them, hygrolidin was the most potent and inhibited growth of solid tumor-derived cell lines such as DLD-1 human colon cancer cells efficiently more than that of hematopoietic tumor cells and normal fibroblasts. FACS analysis revealed that hygrolidin increased cells in G1 and S phases in DLD-1 cells. While hygrolidin decreased amounts of cyclin-dependent kinase (cdk) 4, cyclin D, and cyclin B, it increased cyclin E and p21 levels. Hygrolidin-induced p21 bound to and inhibit cyclin A-cdk2 complex more strongly than cyclin E-cdk2 complex. Furthermore, hygrolidin was found to increase p21 mRNA in DLD-1 cells, but not in normal fibroblasts. Thus, hygrolidin inhibited tumor cell growth through induction of p21. In respect to p21 induction, inhibition of vacuolar-type (H+)-ATPase by hygrolidin was suggested to be involved.  相似文献   

3.
Dynamin, a ~100 kDa large GTPase, is known as a key player for membrane traffic. Recent evidence shows that dynamin also regulates the dynamic instability of microtubules by a mechanism independent of membrane traffic. As microtubules are highly dynamic during mitosis, we investigated whether the regulation of microtubules by dynamin is essential for cell cycle progression. Dynamin 2 intensely localized at the mitotic spindle, and the localization depended on its proline-rich domain (PRD), which is required for microtubule association. The deletion of PRD resulted in the impairment of cytokinesis, whereby the mutant had less effect on endocytosis. Interestingly, dominant-negative dynamin (K44A), which blocks membrane traffic but has no effect on microtubules, also blocked cytokinesis. On the other hand, the deletion of the middle domain, which binds to γ-tubulin, impaired the entry into mitosis. As both deletion mutants had no significant effect on endocytosis, dynamin 2 may participate in cell cycle progression by regulating the microtubules. These data suggest that dynamin may play a key role for cell cycle progression by two distinct pathways, membrane traffic and cytoskeleton.  相似文献   

4.
5.
Without ribosome biogenesis, translation of mRNA into protein ceases and cellular growth stops. We asked whether ribosome biogenesis is cell cycle regulated in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and we determined that it is not regulated in the same manner as in metazoan cells. We therefore turned our attention to cellular sensors that relay cell size information via ribosome biogenesis. Our results indicate that the small subunit (SSU) processome, a complex consisting of 40 proteins and the U3 small nucleolar RNA necessary for ribosome biogenesis, is not mitotically regulated. Furthermore, Nan1/Utp17, an SSU processome protein, does not provide a link between ribosome biogenesis and cell growth. However, when individual SSU processome proteins are depleted, cells arrest in the G1 phase of the cell cycle. This arrest was further supported by the lack of staining for proteins expressed in post-G1. Similarly, synchronized cells depleted of SSU processome proteins did not enter G2. This suggests that when ribosomes are no longer made, the cells stall in the G1. Therefore, yeast cells must grow to a critical size, which is dependent upon having a sufficient number of ribosomes during the G1 phase of the cell cycle, before cell division can occur.  相似文献   

6.
Mimosine reversibly arrests cell cycle progression at the G1-S phase border   总被引:7,自引:0,他引:7  
It has previously been demonstrated that the compound mimosine inhibits cell cycle traverse in late G1 phase prior to the onset of DNA synthesis (Hoffman BD, Hanauske-Abel HM, Flint A, Lalande M: Cytometry 12:26-32, 1991; Lalande M: Exp Cell Res 186:332-339, 1990). These results were obtained by using flow cytometric analysis of DNA content to compare the effects of mimosine on cell cycle traverse with those of aphidicolin, an inhibitor of DNA polymerase alpha activity. We have now measured the incorporation of bromodeoxyuridine into lymphoblastoid cells by flow cytometry to determine precisely where the two inhibitors act relative to the initiation of DNA synthesis. It is demonstrated here that mimosine arrests cell cycle progression at the G1-S phase border. The onset of DNA replication occurs within 15 min of releasing the cells from the mimosine block. In contrast, treatment with aphidicolin results in the accumulation of cells in early S phase. These results indicate that mimosine is a suitable compound for affecting the synchronous release of cells from G1 into S phase and for analyzing the biochemical events associated with this cell cycle phase transition.  相似文献   

7.
Comment on: Li A, et al. Nat Cell Biol 2011; 13:402-11.  相似文献   

8.
9.
AML1/RUNX1, a member of the core binding factor (CBF) family stimulates myelopoiesis and lymphopoiesis by activating lineage-specific genes. In addition, AML1 induces S phase entry in 32Dcl3 myeloid or Ba/F3 lymphoid cells via transactivation. We now found that AML1 levels are regulated during the cell cycle. 32Dcl3 and Ba/F3 cell cycle fractions were prepared using elutriation. Western blotting and a gel shift/supershift assay demonstrated that endogenous CBF DNA binding and AML1 levels were increased 2-4-fold in S and G(2)/M phase cells compared with G(1) cells. In addition, G(1) arrest induced by mimosine reduced AML1 protein levels. In contrast, AML1 RNA did not vary during cell cycle progression relative to actin RNA. Analysis of exogenous Myc-AML1 or AML1-ER demonstrated a significant reduction in G(1) phase cells, whereas levels of exogenous DNA binding domain alone were constant, lending support to the conclusion that regulation of AML1 protein stability contributes to cell cycle variation in endogenous AML1. However, cytokine-dependent AML1 phosphorylation was independent of cell cycle phase, and an AML1 mutant lacking two ERK phosphorylation sites was still cell cycle-regulated. Inhibition of AML1 activity with the CBFbeta-SMMHC or AML1-ETO oncoproteins reduced cyclin D3 RNA expression, and AML1 bound and activated the cyclin D3 promoter. Signals stimulating G(1) to S cell cycle progression or entry into the cell cycle in immature hematopoietic cells might do so in part by inducing AML1 expression, and mutations altering pathways regulating variation in AML1 stability potentially contribute to leukemic transformation.  相似文献   

10.
The serine/threonine kinase Akt is known to promote cell growth by regulating the cell cycle in G1 phase through activation of cyclin/Cdk kinases and inactivation of Cdk inhibitors. However, how the G2/M phase is regulated by Akt remains unclear. Here, we show that Akt counteracts the function of WEE1Hu. Inactivation of Akt by chemotherapeutic drugs or the phosphatidylinositide-3-OH kinase inhibitor LY294002 induced G2/M arrest together with the inhibitory phosphorylation of Cdc2. Because the increased Cdc2 phosphorylation was completely suppressed by wee1hu gene silencing, WEE1Hu was associated with G2/M arrest induced by Akt inactivation. Further analyses revealed that Akt directly bound to and phosphorylated WEE1Hu during the S to G2 phase. Serine-642 was identified as an Akt-dependent phosphorylation site. WEE1Hu kinase activity was not affected by serine-642 phosphorylation. We revealed that serine-642 phosphorylation promoted cytoplasmic localization of WEE1Hu. The nuclear-to-cytoplasmic translocation was mediated by phosphorylation-dependent WEE1Hu binding to 14-3-3theta but not 14-3-3beta or -sigma. These results indicate that Akt promotes G2/M cell cycle progression by inducing phosphorylation-dependent 14-3-3theta binding and cytoplasmic localization of WEE1Hu.  相似文献   

11.
Kwok AC  Wong JT 《Plant physiology》2003,131(4):1681-1691
Cellulosic deposition in alveolar vesicles forms the "internal cell wall" in thecated dinoflagellates. The availability of synchronized single cells, the lack of secondary deposition, and the absence of cellulosic cell plates at division facilitate investigation of the possible roles of cellulose synthesis (CS) in the entire cell cycle. Flow cytograms of cellulosic contents revealed a stepwise process of CS in the dinoflagellate cell cycle, with the highest rate occurring at G(1). A cell cycle delay in G(1), but not G(2)/M, was observed after inhibition of CS. A cell cycle inhibitor of G(1)/S, but not G(2)/M, was able to delay cell cycle progression with a corresponding reduction of CS. The increase of cellulose content in the cell cycle corresponded well to the expected increase of surface area. No differences were observed in the cellulose to surface area ratio between normal and fast-growing G(1) cells, implicating the significance of surface area in linking CS to the coupling of cell growth with cell cycle progression. The coupling of CS to G(1) implicates a novel link between CS and cell cycle control, and we postulate that the coupling mechanism might integrate cell wall integrity to the cell size checkpoint.  相似文献   

12.
The BCCIP alpha protein was identified as a BRCA2 and CDKN1A (p21, or p21(Waf1/Cip1)) Interacting Protein. It binds to a highly conserved domain proximate to the C-terminus of BRCA2 protein and the C-terminal domain of the CDK-inhibitor p21. Previous reports showed that BCCIP alpha enhances the inhibitory activity of p21 toward CDK2 and that BCCIP alpha inhibits the growth of certain tumor cells. Here we show that a second isoform, BCCIP beta, also binds to p21 and inhibits cell growth. The growth inhibition by BCCIP beta can be partially abrogated in p21 deficient cells. Overexpression of BCCIP beta delays the G1 to S progression and results in an elevated p21 expression. These data suggest BCCIP beta as a new regulator for the G1-S cell cycle progression and cell growth control.  相似文献   

13.
14.
The shattered1 (shtd1) mutation disrupts Drosophila compound eye structure. In this report, we show that the shtd1 eye defects are due to a failure to establish and maintain G1 arrest in the morphogenetic furrow (MF) and a defect in progression through mitosis. The observed cell cycle defects were correlated with an accumulation of cyclin A (CycA) and String (Stg) proteins near the MF. Interestingly, the failure to maintain G1 arrest in the MF led to the specification of R8 photoreceptor cells that undergo mitosis, generating R8 doublets in shtd1 mutant eye discs. We demonstrate that shtd encodes Apc1, the largest subunit of the anaphase-promoting complex/cyclosome (APC/C). Furthermore, we show that reducing the dosage of either CycA or stg suppressed the shtd1 phenotype. While reducing the dosage of CycA is more effective in suppressing the premature S phase entry in the MF, reducing the dosage of stg is more effective in suppressing the progression through mitosis defect. These results indicate the importance of not only G1 arrest in the MF but also appropriate progression through mitosis for normal eye development during photoreceptor differentiation.  相似文献   

15.
The effects of rapamycin (RAP) on cell cycle progression of human T cells stimulated with PHA were examined. Cell cycle analysis showed that the RNA content of cells stimulated with PHA in the presence of RAP was similar to that of control T cells stimulated with PHA for 12–24 hr in the absence of the drug. This level was substantially higher than that seen in cells stimulated in the presence of cyclosporin A (CsA), an immunosuppressant known to block cell cycle progression at an early point in the cycle. However, the point in the cell cycle at which RAP acted appeared to be well before the G1/S transition, which occurs about 30–36 hr after stimulation with PHA. In an attempt to further localize the point in the cell cycle where arrest occurred, a set of key regulatory events leading to the G1/S boundary were examined, including p110Rb phosphorylation, which occurred at least 6 hr prior to DNA synthesis, p34cdc2 synthesis, and cyclin A synthesis. In control cultures, p110Rb phosphorylation was detected within 24 hr of PHA stimulation; p34cdc2 and cyclin A synthesis were detected within 30 hr. Addition of RAP to the cultures inhibited each of these events. In contrast, early events, including c-fos, IL-2, and IL-4 mRNAs expression, and IL-2 receptor (p55) expression, were only marginally affected, if at all, in PHA-stimulated T cells. Furthermore, the inhibition of cell proliferation by RAP could not be overcome by addition of exogenous IL-2. These results indicate that RAP blocks cell cycle progression of activated T cells after IL-2/IL-2 receptor interaction but prior to p110Rb phosphorylation and other key regulatory events signaling G1/S transition. © 1993 Wiley-Liss, Inc.  相似文献   

16.
17.
The APC gene is mutated in familial adenomatous polyposis (FAP) as well as in sporadic colorectal tumours. The product of the APC gene is a 300 kDa cytoplasmic protein associated with the adherence junction protein catenin. Here we show that overexpression of APC blocks serum-induced cell cycle progression from G0/G1 to the S phase. Mutant APCs identified in FAP and/or colorectal tumours were less inhibitory and partially obstructed the activity of the normal APC. The cell-cycle blocking activity of APC was alleviated by the overexpression of cyclin E/CDK2 or cyclin D1/CDK4. Consistent with this result, kinase activity of CDK2 was significantly down-regulated in cells overexpressing APC although its synthesis remained unchanged, while CDK4 activity was barely affected. These results suggest that APC may play a role in the regulation of the cell cycle by negatively modulating the activity of cyclin-CDK complexes.  相似文献   

18.
Comment on: Papadopoulou K, et al. J Cell Sci 2010; 123:4374–81 and Agarwal M, et al. J Cell Sci 2010; 123:4366–73  相似文献   

19.
Cellular adenosine accumulates under stress conditions. Few papers on adenosine are concerned with its function in the cell cycle. The cell cycle is the essential mechanism by which all living things reproduce and the target machinery when cells encounter stresses, so it is necessary to examine the relationship between adenosine and the cell cycle. In the present study, adenosine was found to induce G2/M cell‐cycle arrest. Furthermore, adenosine was found to modulate the expression of some important proteins in the cell cycle, such as cyclin B and p21, and to inhibit the transition of metaphase to anaphase in mitosis.  相似文献   

20.
We have shown previously that SNM1A colocalizes with 53BP1 at sites of double-strand breaks (DSBs) induced by IR, and that these proteins interact with or without DNA damage. However, the role of SNM1A in the DNA damage response has not been elucidated. Here, we show that SNM1A is required for an efficient G1 checkpoint arrest after IR exposure. Interestingly, the localization of SNM1A to sites of DSBs does not require either 53BP1 or H2AX, nor does the localization of 53BP1 require SNM1A. However, the localization of SNM1A does require ATM. Furthermore, SNM1A is shown to be a phosphorylation substrate of ATM in vitro, and to interact with ATM in vivo particularly after exposure of cells to IR. In addition, in the absence of SNM1A the activation of the downstream ATM target p53 is reduced. These findings suggest that SNM1A acts with ATM to promote the G1 cell cycle checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号