首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cleavage of DNA from Haemophilus influenzae with restriction endonucleases caused inactivation of transforming ability to an extent that depended on the genetic marker and the enzyme. The rate of inactivation, but not the final level of survival, depended on the concentration of enzyme in the restriction digest. In general, the greatest extent of inactivation of transforming activity was obtained with endonucleases that are known to produce the shortest fragments. We electrophoresed restriction digests of H. influenzae DNA in agarose gels and assayed transforming activity of DNA extracted from gel slices. In this way, we determined the lengths of restriction fragments that contain genetic markers of H. influenzae. For the marker that we studied most thoroughly (nov), the shortest restriction fragment that possessed detectable transforming activity was a 0.9-kilobase pair fragment produced by endonuclease R . PstI. The shortest marker-bearing restriction fragment that retained substantial transforming activity (50% of value for undigested DNA) was a 2.1-kilobase pair EcoRI fragment bearing the kan marker. Among marker-bearing restriction fragments 1 to 4 kilobase pairs in length, survival of transforming activity varied 10,000-fold. We relate these observations to the recent findings by Sisco and Smith (Proc. Natl. Acad. Sci. U.S.A. 76:972-976, 1979) that efficient entry of DNA into competent H. influenzae cells appears to require the presence of a recognition sequence that is scattered throughout the Haemophilus genome in many more copies than in unrelated genomes.  相似文献   

2.
3.
A set of 6 base-modified 2′-deoxyadenosine derivatives was incorporated to diverse DNA sequences by primer extension using Vent (exo-) polymerase and the influence of the modification on cleavage by diverse restriction endonucleases was studied. While 8-substituted (Br or methyl) adenine derivatives were well tolerated by the restriction enzymes and the corresponding sequences were cleaved, the presence of 7-substituted 7-deazaadenine in the recognition sequence resulted in blocking of cleavage by some enzymes depending on the nature and size of the 7-substituent. All sequences with modifications outside of the recognition sequence were perfectly cleaved by all the restriction enzymes. The results are useful both for protection of some sequences from cleavage and for manipulation of functionalized DNA by restriction cleavage.  相似文献   

4.
5.
6.
A restriction endonuclease has been partially purified from Haemophilus influenzae Rf232 containing the genetically determined system of restriction and modification of DNA. The enzyme requires ATP for the degradation of transfecting phage DNA.  相似文献   

7.
8.
Specific methylases that have the properties of deoxyribonucleic acid (DNA) modification enzymes have been isolated from Haemophilus influenzae strain Rd. Two activities ((Methylase IIa and methylase III) were found to protect transforming DNA of H. parainfluenzae from the action of H. influenzae restriction enzymes. To determine the specificty of the protection, a procedure based on biological activity was developed for the separation and purification of the restriction endonucleases from H. influenzae strain Rd. Two endonuclease R activities presumably corresponding to Hind II and Hind III (P. H. Roy and H. O. Smith, 1973; H. O. Smith and K. W. Wilcox, 1970) were characterized by differences in their chromatographic properties, ability to attack T7 DNA, and inactivation of the transforming activity of different markers of H. parainfluenzae DNA. One endonuclease R enzyme (Hind II) attacked T7 DNA and was found to inactivate the dalacin resistance marker (smaller than 0.01% activity remaining) with only a slight effect on the streptomycin resistance marker (83% activity remaining). Methylase IIa treatment protected 40% of the dalacin resistance marker of H. parainfluenzae DNA from inactivation by Hind II. The other restriction activity (Hind III) was inert towards T7 DNA and inactivated the streptomycin resistance marker of H. parainfluenzae DNA (smaller than 0.01% activity remaining) without any effect on the dalacin resistance marker. The methylation of H. parainfluenzae DNA accomplished by methylase III protected 60% of the transforming activity of the streptomycin resistance marker of H. parainfluenzae DNA from the action of Hind III.  相似文献   

9.
10.
The transforming activity of sonicated Haemophilus influenzae DNA   总被引:1,自引:0,他引:1  
Summary The inactivation of transforming Haemophilus influenzae DNA by sonication in aqueous solution was investigated. The molecular weight decrease of the molecules is the major factor in DNA inactivation. It impairs strongly the uptake of the DNA by the recipient bacteria, especially when the molecular weight is lower than 3x106 daltons. The uptake of sonicated DNA by the bacterial cells seems not to be further reduced when molecules of about 0.5x106 daltons are submitted to further depolymerisation. However the transforming activity of these molecules is still sensitive to further sonication. The transforming activity of the sonicated DNA is related in the last resort to the intact length of the DNA molecules, at the level of their single-strand structure, available for recombination. Rupture by ultrasound was found to be twice as efficient in reducing transforming activity as a nick induced by pancreatic DNAse.  相似文献   

11.
12.
13.
Two of thirteen bacillar strains isolated from the inner tissues of cotton plants were found to produce type II restriction endonucleases. The investigation of the site specificity of these enzymes showed that they are AsuI and Eco31I isoschizomers.  相似文献   

14.
15.
Orthodox Type IIP restriction endonucleases, which are commonly used in molecular biological work, recognize a single palindromic DNA recognition sequence and cleave within or near this sequence. Several new studies have reported on structural and biochemical peculiarities of restriction endonucleases that differ from the orthodox in that they require two copies of a particular DNA recognition sequence to cleave the DNA. These two sites requiring restriction endonucleases belong to different subtypes of Type II restriction endonucleases, namely Types IIE, IIF and IIS. We compare enzymes of these three types with regard to their DNA recognition and cleavage properties. The simultaneous recognition of two identical DNA sites by these restriction endonucleases ensures that single unmethylated recognition sites do not lead to chromosomal DNA cleavage, and might reflect evolutionary connections to other DNA processing proteins that specifically function with two sites.  相似文献   

16.
The temperature dependence of the T4 DNA ligase-catalyzed joining of plasmid DNA linearized by the action of HaeIII, EcoRI and PstI restriction endonucleases has been investigated by electron microscopy analysis. The extent of joining is maximal at 4 degrees and decreases with increasing temperatures following sigmoid-like curves. The temperature at which 50% of the maximal reaction is still observable increases going from DNA termini without single-stranded overlaps (produced by HaeIII) to termini with four nucleotides overlap, composed only by two A and two T (produced by EcoRI) to termini with four nucleotide overlap, composed by A, T, G and C (produced by PstI).  相似文献   

17.
A simple and rapid method of purification of restriction endonucleases from different Haemophilus strains is presented. By this method highly purified and stable enzymes can be obtained. Separation of different restriction activities present in the same strain is possible. This method was so far successfully used with Haemophilus influenzae, Haemophilus parainfluenzae and Haemophilus aegyptius strains. The main advantages over previously published procedures reside in the simplication of certain purification steps (for instance the BioGel A 0.5 M filtration is replaced by a hydroxyapatite batch step), elimination of exonuclease activity by fractionation with (NH4) 2SO4, separation of different restriction activities by phosphocellulose chromatography, application of this method to various strains and high purification degree of enzymes.  相似文献   

18.
Summary The expression of the transforming ability of Haemophilus influenzae DNA was investigated after its encapsidation by the coat protein of two different plant viruses, Brome Mosaic Virus (BMV) and Alfalfa Mosaic Virus (AMV). The influence of the encapsidation on the various steps of the transformation process was studied, as well as the protection of the DNA molecule inside of the DNA-protein complex particles against nucleolytic attack.The kinetics of uptake and penetration of free and encapsided DNA and their respective competitive abilities were compared in order to explain the differences which appeared between the rates of transformation by free and encapsided high molecular weight DNAs.Finally, some conclusions are drawn concerning the uncoating process of these nucleoprotein complex particles and the strength of the DNA-protein and protein-protein interactions existing in these particles.Abbreviations M.W. molecular weight - T.A. transforming ability  相似文献   

19.
The molecular nature of two beta-lactamase-specifying plasmids isolated from two separate ampicillin-resistant Haemophilus influenzae type b strains was examined. A 30 X 10(6)-dalton (30-Mdal) plasmid (RSF007) had a copy number of approximately 3 per chromosomal equivalent and a mole fraction guanine plus cytosine content of 0.39. By heteroduplex analysis the 30-Mdal plasmid was found to contain the entire ampicillin translocation DNA segment (TnA) found on R factors of enteric origin. A 3.0-Mdal plasmid (RSF0885) was found as a multicopy pool of approximately 28 copies per chromosomal equivalent, had a mole fraction guanine plus cytosine content of 0.40, and contained only about one-third of the transposable TnA sequence. RSF007 and RSF0885 appeared to be unrelated plasmids in that they share base sequence homology only within the confines of the TnA segment. The 3.0-Mdal Haemophilus plasmid was used to transform E. coli to ampicillin resistance but was found to be unstable in this host in the absence of antibiotic. The possibility that R-plasmids arose in Haemophilus by the translocation of TnA from a donor R-factor onto an indigenous H. influenzae plasmid is discussed.  相似文献   

20.
Phase variably expressed (randomly switching) methyltransferases associated with type III restriction-modification (R-M) systems have been identified in a variety of pathogenic bacteria. We have previously shown that a phase variable methyltransferase (Mod) associated with a type III R-M system in Haemophilus influenzae strain Rd coordinates the random switching of expression of multiple genes, and constitutes a phase variable regulon—‘phasevarion’. We have now identified the recognition site for the Mod methyltransferase in H. influenzae strain Rd as 5′-CGAAT-3′. This is the same recognition site as the previously described HinfIII system. A survey of 59 H. influenzae strains indicated significant sequence heterogeneity in the central, variable region of the mod gene associated with target site recognition. Intra- and inter-strain transformation experiments using Mod methylated or non-methylated plasmids, and a methylation site assay demonstrated that the sequence heterogeneity seen in the region encoding target site specificity does correlate to distinct target sites. Mutations were identified within the res gene in several strains surveyed indicating that Res is not functional. These data suggest that evolution of this type III R-M system into an epigenetic mechanism for controlling gene expression has, in some strains, resulted in loss of the DNA restriction function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号