首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Because they lack some gnathostome-specific traits, cyclostomes have often been regarded as representing an intermediate state linking non-vertebrate chordates and gnathostomes. To understand the evolutionary origins of the jaw and paired fins, lamprey embryos and larvae have been used as comparative models. The lack of the jaw–neck region is a conspicuous feature specific to cyclostomes; however, the absence of these features has been largely neglected both in evolutionary developmental studies and in the field of classical comparative embryology. This review seeks to develop a possible evolutionary scenario of the vertebrate neck muscles by taking the cucullaris (trapezius) muscle as the focus. By combining the comparative embryology of lampreys and gnathostomes, and considering the molecular-level developmental mechanism of skeletal muscle differentiation, this review argues that the establishment of the vertebrate neck deserves to be called an evolutionary novelty based on the remodeling of mesenchymal components between the cranium and the shoulder girdle, which involves both mesodermal and neural crest cell lineages.  相似文献   

2.
Neural crest cells contribute extensively to vertebrate head morphogenesis and their origin is an important question to address in understanding the evolution of the craniate head. The distribution pattern of cephalic crest cells was examined in embryos of one of the living agnathan vertebrates, Lampetra japonica. The initial appearance of putative crest cells was observed on the dorsal aspect of the neural rod at stage 20.5 and ventral expansion of these cells was first seen at the level of rostral somites. As in gnathostomes, cephalic crest cells migrate beneath the surface ectoderm and form three major cell populations, each being separated at the levels of rhombomeres (r) 3 and r5. The neural crest seems initially to be produced at all neuraxial levels except for the rostral-most area, and cephalic crest cells are secondarily excluded from levels r3 and r5. Such a pattern of crest cell distribution prefigures the morphology of the cranial nerve anlage. The second or middle crest cell population passes medial to the otocyst, implying that the otocyst does not serve as a barrier to separate the crest cell populations. The three cephalic crest cell populations fill the pharyngeal arch ventrally, covering the pharyngeal mesoderm laterally with the rostral-most population covering the premandibular region and mandibular arch. The third cell population is equivalent to the circumpharyngeal crest cells in the chick, and its influx into the pharyngeal region precedes the formation of postotic pharyngeal arches. Focal injection of DiI revealed the existence of an anteroposterior organization in the neural crest at the neurular stage, destined for each pharyngeal region. The crest cells derived from the posterior midbrain that express the LjOtxA gene, the Otx2 cognate, were shown to migrate into the mandibular arch, a pattern which is identical to gnathostome embryos. It was concluded that the head region of the lamprey embryo shares a common set of morphological characters with gnathostome embryos and that the morphological deviation of the mandibular arch between the gnathostomes and the lamprey is not based on the early embryonic patterning.  相似文献   

3.
The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.  相似文献   

4.
5.
Neural crest contributions to the lamprey head   总被引:5,自引:0,他引:5  
The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.  相似文献   

6.
7.
Bone morphogenetic protein (BMP) molecules are members of a large family of signaling molecules important in numerous developmental pathways throughout the metazoa. Single members of the BMP2/4 class have been found in invertebrates such as cnidarians, arthropods, nematodes, echinoderms, ascidians, and cephalochordates. In all vertebrates studied, there are at least two copies, BMP2 and BMP4, that play important roles in axial patterning, tissue specification, and organogenesis. The basal vertebrate, lamprey, diverged near the time of vertebrate origins and is useful for understanding the gene duplication events that led to the increased complexity of the vertebrate genome. We characterized the sequence and expression pattern of BMP2/4 class genes in the sea lamprey, Petromyzon marinus. We uncovered three genes that we named PmBMP2/4A, PmBMP2/4B, and PmBMP2/4C. Phylogenetic analysis indicates that PmBMP2/4A is closer than PmBMP2/4B or PmBMP2/4C in sequence identity to both BMP2 and BMP4 of gnathostomes. The developmental expression pattern of PmBMP2/4A also more closely resembles the combined early expression patterns of gnathostome BMP2 and BMP4, whereas PmBMP2/4B and PmBMP2/4C appear to play roles only later in development. Cell labeling showed that the BMP-expressing cells in the branchial arches of lampreys are of neural crest origin. Taken together, our sequence and expression data support the duplication of BMP2/4 genes in the lamprey from a single ancestral vertebrate BMP2/4 gene.  相似文献   

8.
Agnathan or jawless vertebrates, such as lampreys, occupy a critical phylogenetic position between the gnathostome or jawed vertebrates and the cephalochordates, represented by amphioxus. In order to gain insight into the evolution of the vertebrate head, we have cloned and characterized a homolog of the head-specific gene Otx from the lamprey Petromyzon marinus. This lamprey Otx gene is a clear phylogenetic outgroup to both the gnathostome Otx1 and Otx2 genes. Like its gnathostome counterparts, lamprey Otx is expressed throughout the presumptive forebrain and midbrain. Together, these results indicate that the divergence of Otx1 and Otx2 took place after the gnathostome/agnathan divergence and does not correlate with the origin of the vertebrate brain. Intriguingly, Otx is also expressed in the cephalic neural crest cells as well as mesenchymal and endodermal components of the first pharyngeal arch in lampreys, providing molecular evidence of homology with the gnathostome mandibular arch and insights into the evolution of the gnathostome jaw.  相似文献   

9.
Lamprey, the living jawless vertebrate, has been regarded as one of the most primitive groups of vertebrates. The evolutionary phylogenetic position of the lamprey promises to provide hints about the origin of the vertebrate genome as well as the origin of the body plan, a part of which may be written in the genome. Since the lamprey split from the gnathostome lineage early in the history of vertebrates, the shared developmental mechanisms in lampreys and gnathostomes can be regarded as possessed by the hypothetical common ancestor of these animals, whereas the gnathostome-specific developmental mechanisms that are absent from lampreys indicate that they are relatively new, added to the developmental program only after the split of gnathostomes. Thus, the sequential establishment of the gnathostome body plan is inherently related to the history of genomic duplication events. In this review, recent molecular developmental and evolutionary molecular research on the living lampreys are summarized and discussed, taking vertebrate comparative morphology and embryology into consideration.  相似文献   

10.
snail genes mark presumptive mesoderm across bilaterian animals. In gnathostome vertebrates, snail genes are a multimember family that are also markers of premigratory neural crest (pnc) and some postmigratory neural crest derivatives in the pharyngeal arches. Previous studies of nonvertebrate chordates indicate that they have single snail genes that retain ancestral functions in mesoderm development and perhaps in specification of a pnc-like cell population. Lampreys are the most basal extant vertebrates, with well-defined developmental morphology. Here, we identify a single snail gene from the lamprey Petromyzon marinus that is the phylogenetic outgroup of all gnathostome snail genes. This single lamprey snail gene retains ancestral snail patterning domains present in nonvertebrate chordates. Lamprey snail is also expressed in tissues that are broadly equivalent to the combined sites of expression of all three gnathostome snail paralogy groups, excepting in embryonic tissues that are unique to gnathostomes. Importantly, while snail does not appear to demarcate an early neural crest population in lampreys as it does in gnathostomes, it may be involved in later neural crest development. Together, our results indicate that significant cis-regulatory innovation occurred in a single snail gene before the vertebrate radiation, and significant subfunctionalization occurred after snail gene duplications in the gnathostome lineages.  相似文献   

11.
12.
Evolution of the vertebrate jaw has been reviewed and discussed based on the developmental pattern of the Japanese marine lamprey, Lampetra japonica. Though it never forms a jointed jaw apparatus, the L. japonica embryo exhibits the typical embryonic structure as well as the conserved regulatory gene expression patterns of vertebrates. The lamprey therefore shares the phylotype of vertebrates, the conserved embryonic pattern that appears at pharyngula stage, rather than representing an intermediate evolutionary state. Both gnathostomes and lampreys exhibit a tripartite configuration of the rostral-most crest-derived ectomesenchyme, each part occupying an anatomically equivalent site. Differentiated oral structure becomes apparent in post-pharyngula development. Due to the solid nasohypophyseal plate, the post-optic ectomesenchyme of the lamprey fails to grow rostromedially to form the medial nasal septum as in gnathostomes, but forms the upper lip instead. The gnathostome jaw may thus have arisen through a process of ontogenetic repatterning, in which a heterotopic shift of mesenchyme-epithelial relationships would have been involved. Further identification of shifts in tissue interaction and expression of regulatory genes are necessary to describe the evolution of the jaw fully from the standpoint of evolutionary developmental biology.  相似文献   

13.
Dorsoventral (DV) specification is a crucial step for the development of the vertebrate telencephalon. Clarifying the origin of this mechanism will lead to a better understanding of vertebrate central nervous system (CNS) evolution. Based on the lamprey, a sister group of the gnathostomes (jawed vertebrates), we identified three lamprey Hedgehog (Hh) homologues, which are thought to play central signalling roles in telencephalon patterning. However, unlike in gnathostomes, none of these genes, nor Lhx6/7/8, a marker for the migrating interneuron subtype, was expressed in the ventral telencephalon, consistent with the reported absence of the medial ganglionic eminence (MGE) in this animal. Homologues of Gsh2, Isl1/2 and Sp8, which are involved in the patterning of the lateral ganglionic eminence (LGE) of gnathostomes, were expressed in the lamprey subpallium, as in gnathostomes. Hh signalling is necessary for induction of the subpallium identity in the gnathostome telencephalon. When Hh signalling was inhibited, the ventral identity was disrupted in the lamprey, suggesting that prechordal mesoderm-derived Hh signalling might be involved in the DV patterning of the telencephalon. By blocking fibroblast growth factor (FGF) signalling, the ventral telencephalon was suppressed in the lamprey, as in gnathostomes. We conclude that Hh- and FGF-dependent DV patterning, together with the resultant LGE identity, are likely to have been established in a common ancestor before the divergence of cyclostomes and gnathostomes. Later, gnathostomes would have acquired a novel Hh expression domain corresponding to the MGE, leading to the obtainment of cortical interneurons.  相似文献   

14.
15.
Two embryonic tissues-the neural crest and the cranial placodes-give rise to most evolutionary novelties of the vertebrate head. These two tissues develop similarly in several respects: they originate from ectoderm at the neural plate border, give rise to migratory cells and develop into multiple cell fates including sensory neurons. These similarities, and the joint appearance of both tissues in the vertebrate lineage, may point to a common evolutionary origin of neural crest and placodes from a specialized population of neural plate border cells. However, a review of the developmental mechanisms underlying the induction, specification, migration and cytodifferentiation of neural crest and placodes reveals fundamental differences between the tissues. Taken together with insights from recent studies in tunicates and amphioxus, this suggests that neural crest and placodes have an independent evolutionary origin and that they evolved from the neural and non-neural side of the neural plate border, respectively.  相似文献   

16.
Cyclostome embryology and early evolutionary history of vertebrates   总被引:1,自引:0,他引:1  
Modern agnathans include only two groups, the lampreys and thehagfish, that collectively comprise the group Cyclostomata.Although accumulating molecular data support the cyclostomesas a monophyletic group, there remain some unsettled questionsregarding the evolutionary relationships of these animals inthat they differ greatly in anatomical and developmental patternsand in their life histories. In this review, we summarize recentdevelopmental data on the lamprey and discuss some questionsrelated to vertebrate evolutionary development raised by thelimited information available on hagfish embryos. Comparisonof the lamprey and gnathostome developmental patterns suggestssome plesiomorphic traits of vertebrates that would have alreadybeen established in the most recent common ancestor of the vertebrates.Understanding hagfish development will further clarify the,as yet, unrecognized ancestral characters that either the lampreysor hagfishes may have lost. We stress the immediate importanceof hagfish embryology in the determination of the most plausiblescenario for the early history of vertebrate evolution, by addressingquestions about the origins of the neural crest, thyroid, andadenohypophysis as examples.  相似文献   

17.
The cephalic neural crest (NC) of vertebrate embryos yields a variety of cell types belonging to the neuronal, glial, melanocytic and mesectodermal lineages. Using clonal cultures of quail migrating cephalic NC cells, we demonstrated that neurons and glial cells of the peripheral nervous system can originate from the same progenitors as cartilage, one of the mesectodermal derivatives of the NC. Moreover, we obtained evidence that the migrating cephalic NC contains a few highly multipotent precursors that are common to neurons, glia, cartilage and pigment cells and which we interprete as representative of a stem cell population. In contrast, other NC cells, although provided with identical culture conditions, give rise to clones composed of only one or some of these cell types. These cells thus appear restricted in their developmental potentialities compared to multipotent cells. It is therefore proposed that, in vivo, the active proliferation of pluripotent NC cells during the migration process generates distinct subpopulations of cells that become progressively committed to different developmental fates.  相似文献   

18.
The lamprey is the only basal vertebrate in which large-scale gene perturbation analyses are feasible at present. Studies on this unique animal model promise to contribute both to the understanding of the basic neural-crest gene regulatory network architecture, and evolution of the neural crest. In this review, we summarize the currently known regulatory relationships underlying formation of the vertebrate neural crest, and discuss new ways of addressing the many remaining questions using lamprey as an experimental model.  相似文献   

19.
I examine the neural crest and skeletal tissues derived from neural crest cells in the context of novelty/innovation by asking whether the neural crest is a novel tissue and whether the evolutionary origin of the neural crest required innovative developmental processes. As a vertebrate autapomorphy, the neural crest is a novel structure. I equate novelty with innovation and take a hierarchical approach. Some other workers separate the two, using novelty for new structures not found in an ancestor and not homologous with a feature in an ancestor, and innovation for the new processes required to generate the novel structure. While development clearly evolves, I do not separate those processes that result in the production of novel features from those that lead to change in existing structures, whether that change is a transition or transformation from one homologous feature to another (fins-->tetrapod limbs or locomotory appendages-->crustacean maxilliped feeding appendages). The existence of novelties causes us to consider the concept of latent homology. Neural crest cells form cartilage, dentine and bone. Cartilage is found in invertebrates and so is not a vertebrate innovation. No invertebrate cartilage mineralizes in vivo, although some can be induced to mineralize in vitro. Mineralization of cartilage in vivo is a vertebrate innovation. Dentine is a novel tissue that only forms from neural crest cells. Bone is a vertebrate innovation but not one exclusive to the neural crest. The developmental processes responsible for the neural crest and for these skeletal tissues did not arise de novo with the vertebrates. Novelty/innovation results from tinkering with existing processes, from the flexibility that arises from modifications of existing gene networks, and from the selective advantage provided by gene duplications or modifications.  相似文献   

20.
Due to the peculiar morphology of its preotic head, lampreys have long been treated as an intermediate animal which links amphioxus and gnathostomes. To reevaluate the segmental theory of classical comparative embryology, mesodermal development was observed in embryos of a lamprey, Lampetra japonica, by scanning electron microscopy and immunohistochemistry. Signs of segmentation are visible in future postotic somites at an early neurula stage, whereas the rostral mesoderm is unsegmented and rostromedially confluent with the prechordal plate. The premandibular and mandibular mesoderm develop from the prechordal plate in a caudal to rostral direction and can be called the preaxial mesoderm as opposed to the caudally developing gastral mesoderm. With the exception of the premandibular mesoderm, the head mesodermal sheet is secondarily regionalized by the otocyst and pharyngeal pouches into the mandibular mesoderm, hyoid mesoderm, and somite 0. The head mesodermal components never develop into cephalic myotomes, but the latter develop only from postotic somites. These results show that the lamprey embryo shows a typical vertebrate phylotype and that the basic mesodermal configuration of vertebrates already existed prior to the split of agnatha-gnathostomata; lamprey does not represent an intermediate state between amphioxus and gnathostomes. Unlike interpretations of theories of head segmentation that the mesodermal segments are primarily equivalent along the axis, there is no evidence in vertebrate embryos for the presence of preotic myotomes. We conclude that mesomere-based theories of head metamerism are inappropriate and that the formulated vertebrate head should possess the distinction between primarily unsegmented head mesoderm which includes preaxial components at least in part and somites in the trunk which are shared in all the known vertebrate embryos as the vertebrate phylotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号