首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of Swiss albino mice with Plasmodium berghei ANKA (PbA), a lethal strain, led to injury of the liver, thymic atrophy and high host mortality. Action of pentoxifylline (PTX), an inhibitor of TNF-α (tumor necrosis factor alpha), was investigated on hepatic necrosis, thymic atrophy, increased percentage of Sub G0/G1 hepatic and thymic populations, parasitemia and survivability of the infected mice host. Our data suggest the importance of PTX in mice survival and curing of liver cirrhosis, without affecting the parasitemic condition of the infected mice. Histomorphological changes were well evident from the appearance of hypertrophied hepatic cells with abundance of pigments. In the thymus no cortico-medullary demarcation was observed with presence of hypertrophied thymocytes. Hyperplasia of hepatic cells in the Sub-G0/G1 stage as revealed by flow cytometric analyses, was suppressed by PTX which is an indication of apoptotic effect of PTX in mice. Mice treated with PTX showed a significant decrease of necrotic areas in liver and thymus, suggesting that PTX treatment controls TNF-α effect, and thus PTX may be used as an adjuvant in the treatment of malaria.  相似文献   

2.
A possible protective role of IL-18 in host defense against blood-stage murine malarial infection was studied in BALB/c mice using a nonlethal strain, Plasmodium yoelii 265, and a lethal strain, Plasmodium berghei ANKA. Infection induced an increase in mRNA expression of IL-18, IL-12p40, IFN-gamma, and TNF-alpha in the case of P. yoelii 265 and an increase of IL-18, IL-12p40, and IFN-gamma in the case of P. berghei ANKA. The timing of mRNA expression of IL-18 in both cases was consistent with a role in the induction of IFN-gamma protein expression. Histological examination of spleen and liver tissues from infected controls treated with PBS showed poor cellular inflammatory reaction, massive necrosis, a large number of infected parasitized RBCs, and severe deposition of hemozoin pigment. In contrast, IL-18-treated infected mice showed massive infiltration of inflammatory cells consisting of mononuclear cells and Kupffer cells, decreased necrosis, and decreased deposition of the pigment hemozoin. Treatment with rIL-18 increased serum IFN-gamma levels in mice infected with both parasites, delayed onset of parasitemia, conferred a protective effect, and thus increased survival rate of infected mice. Administration of neutralizing anti-IL-18 Ab exacerbated infection, impaired host resistance and shortened the mean survival of mice infected with P. berghei ANKA. Furthermore, IL-18 knockout mice were more susceptible to P. berghei ANKA than were wild-type C57BL/6 mice. These data suggest that IL-18 plays a protective role in host defense by enhancing IFN-gamma production during blood-stage infection by murine malaria.  相似文献   

3.
Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite- and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A(2) and prostaglandin (PG)F(2α). Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNFα reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the "cytokine storm" during acute infection. We conclude that ASA, through both COX inhibition and other "off-target" effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection.  相似文献   

4.
Melioidosis is caused by the facultative intracellular bacterium, Burkholderia pseudomallei. Using C57BL/6 mice, we investigated the role of macrophages, TNF-alpha, TNF receptor-1 (TNFR1) and TNF receptor-2 (TNFR2) in host defense against B. pseudomallei using an experimental model of melioidosis. This study has demonstrated that in vivo depletion of macrophages renders C57BL/6 mice highly susceptible to intranasal infection with B. pseudomallei, with significant mortality occurring within 5 days of infection. Using knockout mice, we have also shown that TNF-alpha and both TNFR1 and TNFR2 are required for optimal control of B. pseudomallei infection. Compared with control mice, increased bacterial loads were demonstrated in spleen and liver of knockout mice at day 2 postinfection, correlating with increased inflammatory infiltrates comprised predominantly of neutrophils and widespread necrosis. Following infection with B. pseudomallei, mortality rates of 85.7%, 70% and 91.7% were observed for mice deficient in TNF-alpha, TNFR1 and TNFR2, respectively. Comparison of survival, bacterial loads and histology indicate that macrophages, TNF-alpha, TNFR1 or TNFR2 play a role in controlling rapid dissemination of B. pseudomallei.  相似文献   

5.
The long pentraxin PTX3 is expressed during acute inflammation and appears to control nitric oxide (NO) and tumor necrosis factor (TNF)-alpha production. In the present study, the physiological function of PTX3 was investigated in a model of pulmonary infection caused by the Gram-negative bacterium Klebsiella pneumoniae. Transgenic mice expressing multiple copies of PTX3 under the control of its own promoter were used to assess lethality rates, bacterial counts and inflammatory indices following pulmonary infection of mice. Expression of PTX3 is enhanced during pulmonary infection in wild-type mice. In transgenic mice given a high inoculum, overt PTX3 expression was associated with faster lethality. Faster lethality correlated with enhanced nitrate in plasma, an inability of neutrophils to migrate to lung tissue and greater dissemination of bacteria to blood at 20h after infection. In contrast, transgenic PTX3 expression conferred protection to mice given lower pulmonary inocula. In the latter experiments, there was enhanced TNF-alpha production, greater neutrophil influx and phagocytosis of bacteria by migrated neutrophils. By controlling the production of TNF-alpha and NO, and depending on the intensity of the inflammatory response induced by a given inoculum, the expression of PTX3 may favor or disfavor the influx of neutrophils and the ability of the murine host to deal with pulmonary infection with K. pneumoniae. These experiments highlight the delicate balance that exists among the various mediators that control the inflammatory response and suggest that PTX3 is an essential part of the ability of a host to deal with bacterial infection.  相似文献   

6.
The impact of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) in the pathology of Parkinson's disease (PD) and in MPTP neurotoxicity remains unclear. Here, male TNF-alpha (-/-) deficient mice and C57bL/6 mice were treated with MPTP (4 x 15 mg/kg, 24 h intervals) and in one series, thalidomide was administered to inhibit TNF-alpha synthesis. Real-time RT-PCR revealed that the striatal mRNA levels of TNF-alpha, of the astrocytic marker glial fibrillary acidic protein (GFAP) and of the marker for activated microglia, macrophage antigen complex-1 (MAC-1), were significantly enhanced after MPTP administration. Thalidomide (50 mg/kg, p.o.) partly protected against the MPTP-induced dopamine (DA) depletion, and TNF-alpha (-/-) mice showed a significant attenuation of striatal DA and DA metabolite loss as well as striatal tyrosine hydroxylase (TH) fiber density, but no difference in nigral TH and DA transporter immunoreactivity. TNF-alpha deficient mice suffered a lower mortality (10%) compared to the high mortality (75%) seen in wild-type mice after acute MPTP treatment (4 x 20 mg/kg, 2 h interval). HPLC measurement of MPP(+) levels revealed no differences in TNF-alpha (-/-), wild-type and thalidomide treated mice. This study demonstrates that TNF-alpha is involved in MPTP toxicity and that inhibition of TNF-alpha response may be a promising target for extending beyond symptomatic treatment and developing anti-parkinsonian drugs for the treatment of the inflammatory processes in PD.  相似文献   

7.
Studies performed in vitro suggest that activation of Toll-like receptors (TLRs) by parasite-derived molecules may initiate inflammatory responses and host innate defense mechanisms against Trypanosoma cruzi. Here, we evaluated the impact of TLR2 and myeloid differentiation factor 88 (MyD88) deficiencies in host resistance to infection with T. cruzi. Our results show that macrophages derived from TLR2 (-/-) and MyD88(-/-) mice are less responsive to GPI-mucin derived from T. cruzi trypomastigotes and parasites. In contrast, the same cells from TLR2(-/-) still produce TNF-alpha, IL-12, and reactive nitrogen intermediates (RNI) upon exposure to live T. cruzi trypomastigotes. Consistently, we show that TLR2(-/-) mice mount a robust proinflammatory cytokine response as well as RNI production during the acute phase of infection with T. cruzi parasites. Further, deletion of the functional TLR2 gene had no major impact on parasitemia nor on mortality. In contrast, the MyD88(-/-) mice had a diminished cytokine response and RNI production upon acute infection with T. cruzi. More importantly, we show that MyD88(-/-) mice are more susceptible to infection with T. cruzi as indicated by the higher parasitemia and accelerated mortality, as compared with the wild-type mice. Together, our results indicate that T. cruzi parasites elicit an alternative inflammatory pathway independent of TLR2. This pathway is partially dependent on MyD88 and necessary for mounting optimal inflammatory and RNI responses that control T. cruzi replication during the early stages of infection.  相似文献   

8.
9.
The participation of type I IFNs (IFN-I) in NO production and resistance to Trypanosoma cruzi infection was investigated. Adherent cells obtained from the peritoneal cavity of mice infected by the i.p. route produced NO and IFN-I. Synthesis of NO by these cells was partially inhibited by treatment with anti-IFN-alphabeta or anti-TNF-alpha Abs. Compared with susceptible BALB/c mice, peritoneal cells from parasite-infected resistant C57BL/6 mice produced more NO (2-fold), IFN-I (10-fold), and TNF-alpha (3.5-fold). Later in the infection, IFN-I levels measured in spleen cell (SC) cultures from 8-day infected mice were greater in C57BL/6 than in infected BALB/c mice, and treatment of the cultures with anti-IFN-alphabeta Ab reduced NO production. IFN-gamma or IL-10 production by SCs was not different between the two mouse strains; IL-4 was not detectable. Treatment of C57BL/6 mice with IFN-I reduced parasitemia levels in the acute phase of infection. Mice deprived of the IFN-alphabetaR gene developed 3-fold higher parasitemia levels in the acute phase in comparison with control 129Sv mice. Production of NO by peritoneal macrophages and SCs was reduced in mice that lacked signaling by IFN-alphabeta, whereas parasitism of macrophages was heavier than in control wild-type mice. We conclude that IFN-I costimulate NO synthesis early in T. cruzi infection, which contributes to a better control of the parasitemia in resistant mice.  相似文献   

10.
In most peripheral infections of rodents and sheep with scrapie, infectivity is found first in lymphoid tissues and later in the central nervous system (CNS). Cells within the germinal centers (GCs) of the spleen and lymph nodes are important sites of extraneural replication, from which infection is likely to spread to the CNS along peripheral nerves. Here, using immunodeficient mice, we investigate the identity of the cells in the spleen that are important for disease propagation. Despite possessing functional T and B lymphocytes, tumor necrosis factor alpha-deficient (TNF-alpha(-/-)) mice lack GCs and follicular dendritic cell (FDC) networks in lymphoid tissues. In contrast, lymphoid tissues of interleukin-6-deficient (IL-6(-/-)) mice possess FDC networks but have impaired GCs. When the CNSs of TNF-alpha(-/-), IL-6(-/-), and wild-type mice were directly challenged with the ME7 scrapie strain, 100% of the mice were susceptible, developing disease after closely similar incubation periods. However, when challenged peripherally (intraperitoneally), most TNF-alpha(-/-) mice failed to develop scrapie up to 503 days postinjection. All wild-type and IL-6(-/-) mice succumbed to disease approximately 300 days after the peripheral challenge. High levels of scrapie infection and the disease-specific isomer of the prion protein, PrP(Sc), were detectable in spleens from challenged wild-type and IL-6(-/-) mice but not from TNF-alpha(-/-) mice. Histopathological analysis of spleen tissue demonstrated heavy PrP accumulations in direct association with FDCs in challenged wild-type and IL-6(-/-) mice. No PrP(Sc) accumulation was detected in spleens from TNF-alpha(-/-) mice. We conclude that, for the ME7 scrapie strain, mature FDCs are critical for replication in lymphoid tissues and that in their absence, neuroinvasion following peripheral challenge is impaired.  相似文献   

11.
The pathogenesis of mousepox due to infection with ectromelia virus strain NIH-79 was characterized in genetically susceptible (BALB/cAnNCr) and genetically resistant (C57BL/6NCr) mice. BALB/c mice inoculated subcutaneous (s.c.) or intranasally (i.n.) had high mortality. Most mice died within 7 days from severe necrosis of the spleen and liver. Necrotic foci in livers of BALB/c mice that survived beyond 7 days often were accompanied by mononuclear cell infiltrates and by hyperplasia of lymphoid tissues. C57BL/6 mice inoculated by either route remained asymptomatic and necrotic lesions were mild or absent, whereas focal non-suppurative hepatitis and lymphoid hyperplasia were prominent. Infectious virus and viral antigen were distributed widely in tissues of BALB/c mice, but had limited distribution in C57BL/6 mice. Both mouse strains had infection of the respiratory tract, genital tract, oral tissues and bone marrow, and BALB/c mice also had infection of the intestines. Both strains also developed serum antibody to vaccinia virus antigen after infection. The results show that ectromelia virus occurs in tissues conducive to mouse to mouse transmission and that the severity and character of mousepox lesions correlate directly with resistance and susceptibility to infection. They also support the concept that cellular immunity contributes to survival from infection.  相似文献   

12.
The effects of prolonged treatment with iron chelator (desferrioxamine) on the development of infection in mice inoculated with Y Trypanosoma cruzi were determined. Infected/treated mice presented lower levels of parasitemia and reduced mortality rate compared with infected/non-treated animals. The five out of twenty infected/treated mice that survived the acute phase of infection showed negative hemoculture and positive ELISA in the acute and chronic phases and positive PCR in the acute phase: in the chronic phase, three of the animals presented negative PCR. The single surviving infected/non-treated animal exhibited positive hemoculture, PCR and ELISA in both phases of infection. Infected groups presented lower levels of iron in the liver compared with treated/non-infected or non-treated/non-infected animals. The serum iron levels of the infected/non-treated group were higher on the 21st day post-infection in comparison with control and infected/treated groups. These results suggest that decrease of iron in the host leads to T. cruzi infection attenuation.  相似文献   

13.
Chronic lung infections by Pseudomonas aeruginosa strains are a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Although there is no clear evidence for a primary defect in the immune system of CF patients, the host is generally unable to clear P. aeruginosa from the airways. PTX3 is a soluble pattern recognition receptor that plays nonredundant roles in the innate immune response to fungi, bacteria, and viruses. In particular, PTX3 deficiency is associated with increased susceptibility to P. aeruginosa lung infection. To address the potential therapeutic effect of PTX3 in P. aeruginosa lung infection, we established persistent and progressive infections in mice with the RP73 clinical strain RP73 isolated from a CF patient and treated them with recombinant human PTX3. The results indicated that PTX3 has a potential therapeutic effect in P. aeruginosa chronic lung infection by reducing lung colonization, proinflammatory cytokine levels (CXCL1, CXCL2, CCL2, and IL-1β), and leukocyte recruitment in the airways. In models of acute infections and in in vitro assays, the prophagocytic effect of PTX3 was maintained in C1q-deficient mice and was lost in C3- and Fc common γ-chain-deficient mice, suggesting that facilitated recognition and phagocytosis of pathogens through the interplay between complement and FcγRs are involved in the therapeutic effect mediated by PTX3. These data suggested that PTX3 is a potential therapeutic tool in chronic P. aeruginosa lung infections, such as those seen in CF patients.  相似文献   

14.
Various bacterial pathogens have been identified as mediators of apoptosis. Apoptosis reportedly shows both detrimental and beneficial effects on biological functions. We studied the role of liver apoptosis in lethal Listeria monocytogenes infection and the regulation of apoptosis by endogenous cytokines during infection. Apoptosis was observed in the spleen but not in the liver of infected mice, whereas the induction of liver necrosis was evident by rising levels of serum aminotransferases in these animals. Apoptosis was detected in the liver of L. monocytogenes-infected mice which had been treated with monoclonal antibody (mAb) against tumor necrosis factor-alpha (TNF-alpha) or interleukin-6 (IL-6), or in TNF-alpha(-/-) mice, but not in gamma- interferon (IFN-gamma)(-/-) mice or mice which had been treated with mAb against IL-4 or IL-10. Augmentation of liver apoptosis in mice treated with mAb against TNF-alpha or IL-6 or in TNF-alpha(-/-) mice correlated with the increase in bacterial numbers in the organ, while no augmentation of apoptosis was observed in the liver of IFN-gamma(-/-) mice irrespective of the marked increase in bacterial numbers in the organs, indicating that augmentation of liver apoptosis may not be merely due to the increase in bacterial growth in the organs. These results suggest that TNF-alpha and IL-6 may play an important role in protecting the liver from apoptosis in lethal L. monocytogenes infection.  相似文献   

15.
16.
Trypanosoma cruzi infection in mice is associated with severe hematological changes, including anemia, which may contribute to mortality. TNF-alpha and nitric oxide (NO) play a critical role in establishing host resistance to this pathogen. We hypothesized that phagocyte-derived NO damages erythrocytes and contributes to the anemia observed during T. cruzi infection. To test this hypothesis, two strains of mice that differed in susceptibility and NO response to T. cruzi infection were used in these studies. We also blocked endogenous NO production by aminoguanidine (AG) treatment or blocked TNF-alpha with a neutralizing antibody and used mice that cannot produce phagocyte-derived NO (C57BL/6 iNOS(-/-)). Following infection with T. cruzi, resistant (C57BL/6) and susceptible (Swiss) mice displayed a parasitemia that peaked at the same time (i.e., day 9), yet parasitemia was 3-fold higher in Swiss mice (P < 0.05). All Swiss mice were dead by day 23 post-infection, while no C57BL/6 mice died during the study. At 14 days post-infection anemia in C57BL/6 mice was more severe than in Swiss mice. Treatment of both strains with the NO inhibitor, AG (50 mg/kg), and the use of iNOS(-/-) mice, revealed that the anemia in T. cruzi-infected mice is not caused by NO. However, the reticulocytosis that occurs during infection was significantly reduced after treatment with AG in both Swiss and C57BL/6 mice (P < 0.05). In addition, we showed that neutralization of TNF-alpha in vivo induced a significant increase in circulating reticulocytes in T. cruzi-infected C57BL/6 mice (P < 0.05), but did not modify other hematologic parameters in these mice. The evaluation of the oxidative stress after induction by t-butyl hydroperoxide (t-BHT) revealed that the treatment with AG completely protected against NO-mediated haemoglobin oxidation. Further, treatment with AG, but not with anti-TNF-alpha, protected against the infection-induced reduction of antioxidant capacity of erythrocytes as assessed by oxygen uptake and induction time. In summary, this is the first report showing the participation of NO and TNF-alpha in the oxidative stress to erythrocytes in acute T. cruzi infection. Further, our data suggest that NO does not play a direct role in development of the anemia. However, NO may contribute to other hematological changes noted during T. cruzi infection, such as the elevation of circulating reticulocytes and the reduction in circulating leukocytes and neutrophils.  相似文献   

17.
Hydroxy acid-based matrix metalloproteinase (MMP) inhibitors have been shown to inhibit tumor infiltration and growth, endotoxin shock, and acute graft-versus-host disease. Blockade of the release of soluble tumor necrosis factor-alpha (TNF-alpha) and CD95 ligand (CD95L; FasL) from cell-associated forms is reportedly involved in the mechanism of the drug effect. We investigated the effect of a MMP inhibitor, KB-R7785, on host resistance against Listeria monocytogenes infection, in which TNF-alpha is essentially required for the defense, in mice. The administration of KB-R7785 exacerbated listeriosis, while the drug prevented lethal shock induced by lipopolysaccharide and D-galactosamine. KB-R7785 inhibited soluble TNF-alpha production in spleen cell cultures stimulated by heat-killed L. monocytogenes and the drug treatment reduced serum TNF-alpha levels in infected mice, whereas the compound was ineffective on the modulation of interferon-gamma and interleukin-10 production. The effect of KB-R7785 was considered to be dependent on TNF-alpha because the drug failed to affect L. monocytogenes infection in anti-TNF-alpha monoclonal antibody-treated mice and TNF-alpha knockout mice. Anti-CD95L monoclonal antibody was also ineffective on the infection. These results suggest that induction of infectious diseases, to which TNF-alpha is critical in host resistance, should be considered in MMP inhibitor-treated hosts.  相似文献   

18.
We investigated the role of different TLRs and MyD88 in host resistance to infection and malaria pathogenesis. TLR2(-/-), TLR4(-/-), TLR6(-/-), TLR9(-/-) or CD14(-/-) mice showed no change in phenotypes (parasitemia, body weight and temperature) when infected with Plasmodium chabaudi chabaudi (AS). MyD88(-/-) mice displayed comparable ability to wild type animals in controlling and clearing parasitemia. Importantly, MyD88(-/-) mice exhibited impaired production of TNF-alpha and IFN-gamma as well as attenuated symptoms, as indicated by changes in body weight and temperature during parasitemia. Consistently, CD11b(+) monocytes and CD11c(+) dendritic cells from infected MyD88(-/-) mice were shown impaired for production of pro-inflammatory cytokines, and in initiating CD4(+) T cell responses. Importantly, the inhibition of T cell activation with anti-CD134L, mostly inhibited IFN-gamma, partially inhibited TNF-alpha production, and protected the animals from malaria symptoms. Our findings suggest that MyD88 and possibly its associated TLRs expressed by dendritic cells play an important role in pro-inflammatory responses, T cell activation, and pathogenesis of malaria, but are not critical for the immunological control of the erythrocytic stage of P. chabaudi.  相似文献   

19.
Vibrio vulnificus infection has attracted special interest because of its high mortality. A strong clinical association exists between hepatic dysfunction and increased morbidity and mortality from V. vulnificus infection. In this study, the effect of C-reactive protein (CRP), a typical hepatogenic acute phase protein, on the lethality induced by V. vulnificus lipopolysaccharide (LPS) was investigated in galactosamine-sensitized mice. The pretreatment of CRP, in a dose of at least 2 mg/kg, 2 hr before the challenge of LPS completely protected mice against the lethality by V. vulnificus LPS. The elevation of serum tumor necrosis factor-alpha (TNF-alpha) induced by LPS administration was not affected by CRP pretreatment. However, the LPS- or TNF-alpha-induced hepatotoxicity was completely prevented by CRP. These results indicate that CRP does not prevent the synthesis, but prevents the hepatotoxic action of TNF-alpha. The possibility that impaired production of acute phase proteins in patients with pre-existing hepatic dysfunction may predispose the higher risk of V. vulnificus infection needs to be evaluated further.  相似文献   

20.
The ascites hepatoma Yoshida AH-130 induces loss of body weight and tissue waste. Tumour necrosis factor alpha (TNF-alpha) plays a pivotal role in the pathogenesis of muscle wasting in this model system, but other cytokines, such as interleukin-6, may be involved.In order to verify whether a combined anticytokine treatment may synergistically counteract muscle protein degradation, tumour bearing rats were treated with pentoxyfilline (PTX, an inhibitor of TNF-alpha synthesis), or with suramin (SUR, an antiprotozoal drug blocking the peripheral action of several cytokines including IL-6 and TNF-alpha), or both the drugs, and the effects on muscle proteolytic systems were assessed.Muscle protein loss in the AH-130-bearing rats was associated with increased activity of both the ATP-ubiquitin- and the calpain- dependent proteolytic pathways (246% and 230% of controls, respectively). Both PTX and SUR, either alone or in combination, prevented the depletion of muscle mass and significantly reduced the activity of muscle proteolytic systems. In particular, treatment with SUR, either alone or with PTX, induced a decrease in enzymatic activities to values similar to those of controls. The results obtained in the present paper demonstrate that: (i) muscle depletion in this model is indeed associated with increased proteasome- and calpain-dependent proteolysis, as previously suggested by increased mRNA expression of molecules pertaining to both pathways; (ii) anticytokine treatments effectively reduce muscle protein loss by down-regulating the activity of at least two major proteolitic systems; (iii) SUR is more effective than PTX in reducing the activity of proteolytic systems, possibly because of its multiple anticytokine action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号