首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
It has been proposed that crustaceans should be excluded from a comparison of biological responses to ocean acidification among organisms with different calcium carbonate (CaCO3 ) forms in their calcified structures. We re-analysed our data without crustaceans and found high variation in organismal responses within CaCO3 categories. We conclude that the CaCO3 polymorph alone does not predict sensitivity, and a consideration of functional differences among organisms is necessary for predicting variation in response to acidification.  相似文献   

2.
Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta‐analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life‐history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single‐stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.  相似文献   

3.
Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta‐analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait‐based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi‐species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single‐species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature.  相似文献   

4.
There is great concern over the future effects of ocean acidification on marine organisms, especially for skeletal calcification, yet little is known of natural variation in skeleton size and composition across the globe, and this is a prerequisite for identifying factors currently controlling skeleton mass and thickness. Here, taxonomically controlled latitudinal variations in shell morphology and composition were investigated in bivalve and gastropod molluscs, brachiopods, and echinoids. Total inorganic content, a proxy for skeletal CaCO3, decreased with latitude, decreasing seawater temperature, and decreasing seawater carbonate saturation state (for CaCO3 as calcite (Ωcal)) in all taxa. Shell mass decreased with latitude in molluscs and shell inorganic content decreased with latitude in buccinid gastropods. Shell thickness decreased with latitude in buccinid gastropods (excepting the Australian temperate buccinid) and echinoids, but not brachiopods and laternulid clams. In the latter, the polar species had the thickest shell. There was no latitudinal trend in shell thickness within brachiopods. The variation in trends in shell thickness by taxon suggests that in some circumstances ecological factors may override latitudinal trends. Latitudinal gradients may produce effects similar to those of future CO2‐driven ocean acidification on CaCO3 saturation state. Responses to latitudinal trends in temperature and saturation state may therefore be useful in informing predictions of organism responses to ocean acidification over long‐term adaptive timescales.  相似文献   

5.
Decreasing pH levels in the world’s oceans are widely recognized as a threat to marine life. Bryozoans are among several phyla that produce calcium carbonate skeletons potentially affected by ocean acidification (OA). Depending on species, bryozoan skeletons can consist of calcite, aragonite or have a bimineralic combination of these two minerals. Aragonite is generally more soluble in seawater than calcite, making aragonitic species more vulnerable to OA. Here, for the first time we use Raman spectroscopy to determine the mineral composition of a tropical bryozoan biota. Compared with bryozoan biotas from higher latitudes in which calcite predominates, aragonite was found to occur in a much higher proportion of the 22 cheilostome bryozoan species collected from the shorelines of Penang and Langkawi in Malaysia, where 46% of species are calcitic, 41% aragonitic and 13% bimineralic. All but one of the aragonitic or bimineralic species belong to the ascophorans, whereas calcitic skeletons characterized most of the anascans, many of which are primitive ‘weedy’ malacostegines. These results suggest a relatively high vulnerability of tropical bryozoan faunas to OA, with the weedier taxa likely to be least impacted.  相似文献   

6.
基于文献计量的全球海洋酸化研究状况分析   总被引:6,自引:0,他引:6  
陈芃  陈新军  陈长胜  胡飞飞 《生态学报》2018,38(10):3368-3381
海洋酸化(Ocean acidification)为目前备受人们关注的全球性问题。因此为了能够客观地揭示海洋酸化的研究态势,研究采用文献计量分析(Bibliometric analysis)的方法,以海洋酸化概念提出后(2004年以后)ISI Web of Science期刊引文数据库中涉及到海洋酸化研究的所有文献为样本,对文献的增长趋势及期刊分布进行描述统计,并基于关键词的知识图谱及突变分析的方法探究海洋酸化的热点关注方向随时间的变动及研究前沿。描述统计表明:海洋酸化概念提出的这十多年来,涉及海洋酸化的研究文献数量呈现激增的态势,研究学科交叉明显,海洋酸化对珊瑚礁的影响是这十年来的重点研究领域。从基于关键词的知识图谱可以看到,在海洋酸化研究初期(2004—2009年),研究内容主要分为两个部分,一是海洋酸化对海洋生物(尤其是珊瑚礁生物及浮游植物)及生态系统的影响;二是对海洋酸化现象的认识;中期(2010—2015年),研究内容与初期相似,研究重点往海洋生物上倾斜,同时有新的热点研究区域和研究方向的出现;近期(2016年以后),海洋酸化对海洋生物影响的研究依旧占据着主流研究方向。对基于突变分析得到的当前(2018年2月)海洋酸化研究的热点关注的文献分析发现,当前海洋酸化的研究存在以下5个前沿方向:(1)在探究海洋酸化与生物的关系之时需结合多因子讨论;(2)探索生物在海洋酸化下的内在应对机制;(3)海洋酸化影响下的生物响应的综合评估及预测;(4)探索海洋酸化对海洋生态系统的影响;(5)对海洋酸化概念的挑战——海洋酸化形成原因的探索。  相似文献   

7.
Biomineralization is widespread among photosynthetic organisms in the ocean, in inland waters and on land. The most quantitatively important biogeochemical role of land plants today in biomineralization is silica deposition in vascular plants, especially grasses. Terrestrial plants also increase the rate of weathering, providing the soluble substrates for biomineralization on land and in water bodies, a role that has had global biogeochemical impacts since the Devonian. The dominant photosynthetic biomineralizers in today's ocean are diatoms and radiolarians depositing silica and coccolithophores and foraminifera depositing calcium carbonate. Abiotic precipitation of silica from supersaturated seawater in the Precambrian preceded intracellular silicification dominated by sponges, then radiolarians and finally diatoms, with successive declines in the silicic acid concentration in the surface ocean, resulting in some decreases in the extent of silicification and, probably, increases in the silicic acid affinity of the active influx mechanisms. Calcium and bicarbonate concentrations in the surface ocean have generally been supersaturating with respect to the three common calcium carbonate biominerals through geological time, allowing external calcification as well as calcification in compartments within cells or organisms. The forms of calcium carbonate in biominerals, and presumably the evolution of the organisms that produce them, have been influenced by abiotic variations in calcium and magnesium concentrations in seawater, and calcium carbonate deposition has probably also been influenced by carbon dioxide concentration whose variations are in part biologically determined. Overall, there has been less biological feedback on the availability of substrates for calcification than is the case for silicification.  相似文献   

8.
A growing body of evidence suggests that ocean acidification acting synergistically with ocean warming alters carbonate biomineralization in a variety of marine biota. Magnesium often substitutes for Ca in the calcite skeletons of marine invertebrates, increasing their solubility. The spatio-environmental distribution of Mg in marine invertebrates has seldom been studied, despite its importance for assessing vulnerabilities to ocean acidification. Because pH decreases with water depth, it is predicted that levels of Mg in calcite skeletons should also decrease to counteract dissolution. Such a pattern has been suggested by evidence from echinoderms. Data on magnesium content and depth in Arctic bryozoans (52 species, 103 individuals, 150 samples) are here used to test this prediction, aided by comparison with six conceptual models explaining all possible scenarios. Analyses were based on a uniform dataset spanning more than 200 m of coastal water depth. No significant relationship was found between depth and Mg content; indeed, the highest Mg content among the analyzed taxa (8.7 % mol MgCO3) was recorded from the deepest settings (>200 m). Our findings contrast with previously published results from echinoderms in which Mg was found to decrease with depth. The bryozoan results suggest that ocean acidification may have less impact on the studied bryozoans than is generally assumed. In the broad context, our study exemplifies quantitative testing of spatial patterns of skeletal geochemistry for predicting the biological effects of environmental change in the oceans.  相似文献   

9.
Rising atmospheric CO2 and its equilibration with surface ocean seawater is lowering both the pH and carbonate saturation state (Ω) of the oceans. Numerous calcifying organisms, including reef-building corals, may be severely impacted by declining aragonite and calcite saturation, but the fate of coral reef ecosystems in response to ocean acidification remains largely unexplored. Naturally low saturation (Ω ~ 0.5) low pH (6.70–7.30) groundwater has been discharging for millennia at localized submarine springs (called “ojos”) at Puerto Morelos, México near the Mesoamerican Reef. This ecosystem provides insights into potential long term responses of coral ecosystems to low saturation conditions. In-situ chemical and biological data indicate that both coral species richness and coral colony size decline with increasing proximity to low-saturation, low-pH waters at the ojo centers. Only three scleractinian coral species (Porites astreoides, Porites divaricata, and Siderastrea radians) occur in undersaturated waters at all ojos examined. Because these three species are rarely major contributors to Caribbean reef framework, these data may indicate that today’s more complex frame-building species may be replaced by smaller, possibly patchy, colonies of only a few species along the Mesoamerican Barrier Reef. The growth of these scleractinian coral species at undersaturated conditions illustrates that the response to ocean acidification is likely to vary across species and environments; thus, our data emphasize the need to better understand the mechanisms of calcification to more accurately predict future impacts of ocean acidification.  相似文献   

10.
Ocean acidification poses a serious threat to marine calcifying organisms, yet experimental and field studies have found highly diverse responses among species and environments. Our understanding of the underlying drivers of differential responses to ocean acidification is currently limited by difficulties in directly observing and quantifying the mechanisms of bio‐calcification. Here, we present Raman spectroscopy techniques for characterizing the skeletal mineralogy and calcifying fluid chemistry of marine calcifying organisms such as corals, coralline algae, foraminifera, and fish (carbonate otoliths). First, our in vivo Raman technique is the ideal tool for investigating non‐classical mineralization pathways. This includes calcification by amorphous particle attachment, which has recently been controversially suggested as a mechanism by which corals resist the negative effects of ocean acidification. Second, high‐resolution ex vivo Raman mapping reveals complex banding structures in the mineralogy of marine calcifiers, and provides a tool to quantify calcification responses to environmental variability on various timescales from days to years. We describe the new insights into marine bio‐calcification that our techniques have already uncovered, and we consider the wide range of questions regarding calcifier responses to global change that can now be proposed and addressed with these new Raman spectroscopy tools.  相似文献   

11.
Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow‐water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic foraminifera. We found a reduction in the number of species of foraminifera as calcium carbonate saturation state fell and that the assemblage shifted from one dominated by calcareous species at reference sites (pH ~8.19) to one dominated by agglutinated foraminifera at elevated levels of CO2 (pH ~7.71). It is expected that ocean acidification will result in changes in foraminiferal assemblage composition and agglutinated forms may become more prevalent. Although Padina did not prevent adverse effects of ocean acidification, high biomass stands of seagrass or seaweed farms might be more successful in protecting epiphytic foraminifera.  相似文献   

12.
Irie T  Bessho K  Findlay HS  Calosi P 《PloS one》2010,5(10):e13436
Ocean acidification is potentially one of the greatest threats to marine ecosystems and global carbon cycling. Amongst calcifying organisms, coccolithophores have received special attention because their calcite precipitation plays a significant role in alkalinity flux to the deep ocean (i.e., inorganic carbon pump). Currently, empirical effort is devoted to evaluating the plastic responses to acidification, but evolutionary considerations are missing from this approach. We thus constructed an optimality model to evaluate the evolutionary response of coccolithophorid life history, assuming that their exoskeleton (coccolith) serves to reduce the instantaneous mortality rates. Our model predicted that natural selection favors constructing more heavily calcified exoskeleton in response to increased acidification-driven costs. This counter-intuitive response occurs because the fitness benefit of choosing a better-defended, slower growth strategy in more acidic conditions, outweighs that of accelerating the cell cycle, as this occurs by producing less calcified exoskeleton. Contrary to the widely held belief, the evolutionarily optimized population can precipitate larger amounts of CaCO(3) during the bloom in more acidified seawater, depending on parameter values. These findings suggest that ocean acidification may enhance the calcification rates of marine organisms as an adaptive response, possibly accompanied by higher carbon fixation ability. Our theory also provides a compelling explanation for the multispecific fossil time-series record from ~200 years ago to present, in which mean coccolith size has increased along with rising atmospheric CO(2) concentration.  相似文献   

13.
In the last few years, evidence has accumulated that calcifyingorganisms are likely to be affected by ocean acidification.Therefore, the production of calcium carbonate will probablydecline, although conversely global warming, increasing stratificationand sea level rise may also stimulate increases in global calcification.As acidification reaches the deep ocean, it will cause pronouncedshallowing of the lysocline depths for calcite and aragonite,leading most probably to an almost complete cessation of deep-seacalcium carbonate burial for some centuries. Here, I brieflyreview the consequences of these and other changes on futureocean calcium carbonate cycling, and the consequences of thisfor future climate. Associated climate impacts are not likelyto be significant over the next few centuries, but will becomeincreasingly important thereafter. After the carbonate compensationresponse to acidification has run its course, extra CO2 is expectedto be left behind in the atmosphere, protecting against futureice ages.  相似文献   

14.
Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high‐Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community‐scale and long‐term experiments in stress response.  相似文献   

15.
Oceanic uptake of anthropogenic carbon dioxide (CO2) is altering the carbonate chemistry of seawater, with potentially negative consequences for many calcifying marine organisms. At the same time, increasing fisheries exploitation is impacting on marine ecosystems. Here, using increased benthic‐invertebrate mortality as a proxy for effects of ocean acidification, the potential impact of the two stressors of fishing and acidification on the southeast Australian marine ecosystem to year 2050 was explored. The individual and interaction effects of the two stressors on biomass and diversity were examined for the entire ecosystem and for regional assemblages. For 61 functional groups or species, the cumulative effects of moderate ocean acidification and fishing were additive (30%), synergistic (33%), and antagonistic (37%). Strong ocean acidification resulted in additive (22%), synergistic (40%), and antagonistic (38%) effects. The greatest impact was on the demersal food web, with fishing impacting predation and acidification affecting benthic production. Areas that have been subject to intensive fishing were the most susceptible to acidification effect, although fishing also mitigated some of the decline in biodiversity observed with moderate acidification. The model suggested that ocean acidification and long‐term fisheries exploitation could act synergistically with the increasing sensitivity to change from long‐term (decades) fisheries exploitation potentially causing unexpected restructuring of the pelagic and demersal food webs. Major regime shifts occur around year 2040. Greater focus is needed on how differential fisheries exploitation of marine resources may exacerbate or accelerate effects of environmental changes such as ocean acidification.  相似文献   

16.
Effects of naturally acidified seawater on seagrass calcareous epibionts   总被引:2,自引:0,他引:2  
Surface ocean pH is likely to decrease by up to 0.4 units by 2100 due to the uptake of anthropogenic CO2 from the atmosphere. Short-term experiments have revealed that this degree of seawater acidification can alter calcification rates in certain planktonic and benthic organisms, although the effects recorded may be shock responses and the long-term ecological effects are unknown. Here, we show the response of calcareous seagrass epibionts to elevated CO2 partial pressure in aquaria and at a volcanic vent area where seagrass habitat has been exposed to high CO2 levels for decades. Coralline algae were the dominant contributors to calcium carbonate mass on seagrass blades at normal pH but were absent from the system at mean pH 7.7 and were dissolved in aquaria enriched with CO2. In the field, bryozoans were the only calcifiers present on seagrass blades at mean pH 7.7 where the total mass of epiphytic calcium carbonate was 90 per cent lower than that at pH 8.2. These findings suggest that ocean acidification may have dramatic effects on the diversity of seagrass habitats and lead to a shift in the biogeochemical cycling of both carbon and carbonate in coastal ecosystems dominated by seagrass beds.  相似文献   

17.
The results of a study of the role of organic compounds in theformation of carlxmate crystals in marine biological systemsare reported. In an increasing concentration of certain organiccompounds which complex calcium ions, the proportion of aragonitedecreases and that of calcite increases. In increasing concentrationsof magnesium ions the proportion of aragonite increases andthat of calcite and vaterite decreases. When the influence oforganic compounds is greater or smaller than that of magnesiumions, only calcite or only aragonite is formed, respectively.Organic compounds forming a strong complex with calcium ionscause the formation of magnesium-rich calcite, and with an increasein temperature and the concentration of magnesium ions, themagnesium carbonate content of precipitated magnesian calciteincreases. When the influence of organic compounds is almostequivalent to that of magnesium ions, in increasing or decreasingtemperatures, the proportion of calcite decreases or increases,respectively, and the proportion of aragonite increases or decreases,respectively. The concentration of magnesium ions in the bodyfluids of marine calcareous organisms seems to differ littlefrom that of other organisms, and seems to be similar to thatof sea water. Only the presence of certain organic compoundsbrings about the formation of the carbonate crystals observedin marine biological systems. The very important role of organicmatter in the formation of crystals found in skeletal carbonatesis emphasized.  相似文献   

18.
人类活动引起的大气CO2浓度的升高,除了使全球温度升高外,导致的另一个严重生态问题——海洋酸化(Ocean acidification,OA),受到社会各界包括科研界的高度重视,该领域的大部分研究结果都是在近十年才发表出来的,目前还有很多需要解决的问题。海洋酸化的研究涉及到很多学科的交叉包括化学、古生物学、生态学、生物地球化学等等。在生物学领域,海洋酸化主要围绕敏感物种,例如由碳酸钙形成贝壳或外骨骼的贝类,珊瑚礁群体等。鱼类作为海洋脊椎动物的代表生物类群,自身具有一定的酸碱平衡调节能力,但相关海洋酸化方向的研究并不是很多。尽管人们对于海洋酸化对鱼类的影响了解甚少,这并不说明海洋酸化对鱼类没有作用或者效应小,在相关研究逐步展开的同时,发现鱼类同样受到海洋酸化的危害,几乎涉及到鱼类整个生活史和几乎大部分生理过程,尤其是早期生活史的高度敏感。因此就目前国内外对此领域研究结果做综述,以期待业界同行能够对海水鱼类这个大的类群引起重视。  相似文献   

19.
海洋酸化和海洋变暖是当下及未来海洋生物及其依存生态系统面临的主要环境压力和生态问题。当前,海洋生物早期发育气候变化生物学的研究主要集中于海洋酸化的影响,为了更好地探究海洋气候变化对海洋生物的影响,有必要研究海洋酸化和变暖联合作用下海洋生物的生态响应。以受精后24天的刺参稚参为研究对象,通过模拟当前和本世纪末海洋环境,观察海水酸化和升温对刺参稚参在体色发育关键时期生长、发育及体色变化的影响。实验设置对照组(大连近海水温,pCO2400 mg·kg^-1)、升温组(对照组水温+2℃,pCO2400 mg·kg^-1)、酸化组(对照组水温,pCO21000 mg·kg^-1)、酸化升温组(对照组水温+2℃,pCO21000 mg·kg^-1)。结果表明:温度升高2℃能够显著提高稚参发育速率,体色变化加快;pH值降低0.23个单位显著延迟稚参生长,体色变化减缓,个体间体重差异变大;升温2℃能抵消pH降低0.23个单位对稚参生长和发育的负面影响;较长时间的海水酸化和升温胁迫能够使稚参逐渐适应,稚参表现出一定的耐受性。  相似文献   

20.
海洋酸化对珊瑚礁生态系统的影响研究进展   总被引:1,自引:0,他引:1  
张成龙  黄晖  黄良民  刘胜 《生态学报》2012,32(5):1606-1615
目前,大气CO2浓度的升高已导致海水pH值比工业革命前下降了约0.1,海水碳酸盐平衡体系随之变化,进而影响珊瑚礁生态系统的健康。近年来的研究表明海洋酸化导致造礁石珊瑚幼体补充和群落恢复更加困难,造礁石珊瑚和其它造礁生物(Reef-building organisms)钙化率降低甚至溶解,乃至影响珊瑚礁鱼类的生命活动。虽然海洋酸化对造礁石珊瑚光合作用的影响不显著,但珊瑚-虫黄藻共生体系会受到一定影响。建议选择典型海区进行长期系统监测,结合室内与原位模拟试验,从个体、种群、群落到系统不同层面,运用生理学和分子生物学技术,结合生态学研究手段,综合研究珊瑚的相应响应,以期深入认识海洋酸化对珊瑚礁生态系统健康(例如珊瑚白化)的影响及其效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号