共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The present study evaluated the removal of Escherichia coli XL1-blue biofilms using periodic jets of carbon dioxide aerosols (a mixture of solid and gaseous CO2) with nitrogen gas. The aerosols were generated by the adiabatic expansion of high-pressure CO2 gas through a nozzle and used to remove air-dried biofilms. The areas of the biofilms were measured from scanning electron micrographs before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured with various air-drying times of the biofilms before the treatment, surface materials, and durations of CO2 aerosols in each 8-s aerosol–nitrogen cleaning cycle. Nearly 100% of the fresh biofilms were removed from the various surfaces very reliably within 90 s. This technique can be useful for removing unsaturated biofilms on solid surfaces and has potential applications for cleaning bio-contaminated surfaces. 相似文献
6.
Bacterial biofilms are a growing concern in a broad range of areas. In this study, a mixture of RNA bacteriophages isolated from municipal wastewater was used to control and remove biofilms. At the concentrations of 400 and 4 × 107 PFU/mL, the phages inhibited Pseudomonas aeruginosa biofilm formation by 45 ± 15% and 73 ± 8%, respectively. At the concentrations of 6,000 and 6 × 107 PFU/mL, the phages removed 45 ± 9% and 75 ± 5% of pre‐existing P. aeruginosa biofilms, respectively. Chlorine reduced biofilm growth by 86 ± 3% at the concentration of 210 mg/L, but it did not remove pre‐existing biofilms. However, a combination of phages (3 × 107 PFU/mL) and chlorine at this concentration reduced biofilm growth by 94 ± 2% and removed 88 ± 6% of existing biofilms. In a continuous flow system with continued biofilm growth, a combination of phages (a one‐time treatment at the concentration of 1.9 × 108 PFU/mL for 1 h first) with chlorine removed 97 ± 1% of biofilms after Day 5 while phage and chlorine treatment alone removed 89 ± 1% and 40 ± 5%, respectively. For existing biofilms, a combined use of a lower phage concentration (3.8 × 105 PFU/mL) and chlorination with a shorter time duration (12 h) followed by continuous water flushing removed 96 ± 1% of biofilms in less than 2 days. Laser scanning confocal microscopy supplemented with electron microscopy indicated that the combination treatment resulted in biofilms with lowest cell density and viability. These results suggest that the combination treatment of phages and chlorine is a promising method to control and remove bacterial biofilms from various surfaces. Biotechnol. Bioeng. 2013; 110: 286–295. © 2012 Wiley Periodicals, Inc. 相似文献
7.
Giuseppantonio Maisetta Lucia Grassi Mariagrazia Di Luca Silvia Bombardelli Chiara Medici Franca Lisa Brancatisano 《Biofouling》2016,32(7):787-800
In search of new antimicrobials with anti-biofilm potential, in the present study activity of the frog-skin derived antimicrobial peptide temporin 1Tb (TB) against Staphylococcus epidermidis biofilms was investigated. A striking ability of TB to kill both forming and mature S. epidermidis biofilms was observed, especially when the peptide was combined with cysteine or EDTA, respectively. Kinetics studies demonstrated that the combination TB/EDTA was active against mature biofilms already after 2–4-h exposure. A double 4-h exposure of biofilms to TB/EDTA further increased the therapeutic potential of the same combination. Of note, TB/EDTA was able to eradicate S. epidermidis biofilms formed in vitro on silicone catheters. At eradicating concentrations, TB/EDTA did not cause hemolysis of human erythrocytes. The results shed light on the anti-biofilm properties of TB and suggest a possible application of the peptide in the lock therapy of catheters infected with S. epidermidis. 相似文献
8.
Bethany Dice Farrel Buchinsky Nalini Metha Garth D. Ehrlich Fen Z. Hu 《Biofouling》2013,29(4):367-375
Staphylococcus epidermidis is a clinically important opportunistic pathogen that forms biofilm infections on nearly all types of indwelling medical devices. The biofilm forming capability of S. epidermidis has been linked to the presence of the ica operon in the genome, and the amount of biofilm formation measured by the crystal violet (CV) adherence assay. Six S. epidermidis strains were characterized for their ica status using PCR, and their biofilm forming ability over 6 days, using the CV assay and a flow cell system. Ica-negative strains characterized as ‘negative for biofilm formation’ based on the CV assay were demonstrated to form strongly attached biofilms after 6 days. However, the biofilms were not as extensive as the ica-positive strains. It was concluded that ica is not required for biofilm formation, nor is the 24-h CV assay generalizable for predicting the 6-day biofilm-forming ability for all S. epidermidis strains. 相似文献
9.
The ability of Aeribacillus pallidus E334 to produce pellicle and form a biofilm was studied. Optimal biofilm formation occurred at 60 °C, pH 7.5 and 1.5% NaCl. Extra polymeric substances (EPS) were composed of proteins and eDNA (21.4 kb). E334 formed biofilm on many surfaces, but mostly preferred polypropylene and glass. Using CLSM analysis, the network-like structure of the EPS was observed. The A. pallidus biofilm had a novel eDNA content. DNaseI susceptibility (86.8% removal) of eDNA revealed its importance in mature biofilms, but the purified eDNA was resistant to DNaseI, probably due to its extended folding outside the matrix. Among 15 cleaning agents, biofilms could be removed with alkaline protease and sodium dodecyl sulphate (SDS). The removal of cells from polypropylene and biomass on glass was achieved with combined SDS/alkaline protease treatment. Strong A. pallidus biofilms could cause risks for industrial processes and abiotic surfaces must be taken into consideration in terms of sanitation procedures. 相似文献
10.
Sugimoto S Iwase T Sato F Tajima A Shinji H Mizunoe Y 《Journal of applied microbiology》2011,111(6):1406-1415
Aims: Staphylococcus epidermidis Esp, an extracellular serine protease, inhibits Staphylococcus aureus biofilm formation and nasal colonization. To further expand the biotechnological applications of Esp, we developed a highly efficient and economic method for the purification of recombinant Esp based on a Brevibacillus choshinensis expression–secretion system. Methods and Results: The esp gene was fused with the N‐terminal Sec‐dependent signal sequence of the B. choshinensis cell wall protein and a C‐terminal hexa‐histidine‐tag gene. The recombinant Esp was expressed and secreted into the optimized medium as an immature form and subsequently activated by thermolysin. The mature Esp was easily purified by a single purification step using nickel affinity chromatography and showed proteolytic activity as well as Staph. aureus biofilm destruction activity. Conclusions: The purification yield of the developed extracellular production system was 5 mg recombinant mature Esp per 20‐ml culture, which was much higher than that of an intracellular production system in Escherichia coli (3 mg recombinant Esp per 1‐l culture). Significance and Impact of the Study: Our findings will be a powerful tool for the production and purification of recombinant Esp and also applicable to a large variety of recombinant proteins used for basic researches and biotechnological applications. 相似文献
11.
12.
Yang XM Li N Chen JM Ou YZ Jin H Lu HJ Zhu YL Qin ZQ Qu D Yang PY 《FEMS microbiology letters》2006,263(1):32-40
Staphylococcus epidermidis is one of the major causative agents for nosocomial infections. To reveal the pathogenesis factors, we performed the comparative proteomic analysis of invasive ATCC35984 and commensal ATCC12228 strains by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. The differentially expressed proteins were involved in carbohydrate metabolism, sugar binding, lipid degradation and amino acid binding. In addition, we demonstrated that the trap gene was transcribed by 3.657+/-0.156 (P<0.01) -fold higher in ATCC35984 than in ATCC12228. Levels of accumulation-associated protein (AAP) were found to be low by the immuno-dot blotting assay in ATCC12228, which is unable to form biofilm. Our results suggest that the target of RNAIII activating protein and AAP may contribute to S. epidermidis virulence and biofilm formation. 相似文献
13.
Despite the recent enthusiasm for using bacteriophages as bacterial control agents, there are only limited studies concerning phage interaction with their respective hosts residing in mixed biofilm consortia and especially in biofilms where the host species is a minor constituent. In the present work, a study was made of mono and dual species biofilms formed by Pseudomonas fluorescens (Gram-negative) and/or Staphylococcus lentus (Gram-positive) and their fate after infection with phages. The dual species biofilms consisted predominantly of S. lentus. The exposure of these biofilms to a cocktail containing both P. fluorescens and S. lentus phages effectively killed and removed the hosts from the substratum. Additionally, this cocktail approach also controlled the hosts released from the biofilms to the planktonic phase. The ability of phages to control a host population present in minority in the mixed species biofilm was also assessed. For this objective, the biofilms were challenged only with phage φIBB-PF7A, specific for P. fluorescens and the results obtained were to some extent unpredicted. First, φIBB-PF7A readily reached the target host and caused a significant population decrease. Secondly, and surprisingly, this phage was also capable of causing partial damage to the biofilms leading to the release of the non-susceptible host (S. lentus) from the dual species biofilms to the planktonic phase. The efficiency of phage treatment of biofilms was to some extent dependent on the number of cells present and also conditioned by the infection strategy (dynamic or static) utilized in the infection of the biofilms. Nevertheless, in most circumstances phages were well capable of controlling their target hosts. 相似文献
14.
Xiaojuan Tan Lin Liu Shili Liu Dongting Yang Yikun Liu Shuang Yang Aiqun Jia Nan Qin 《遗传学报》2014,41(7):413-416
Staphylococci are Gram-positive, AT-rich cocci, and often stick together in grape-like clusters. The genus can be classified into two groups based on their ability to produce coagulase, an enzyme that causes clotting of blood plasma (Otto, 2004). Coagulase-positive Staphylococci include Staphylococcus aureus, a common pathogen of community-acquired and nosocomial infections (Smith et al., 2009). 相似文献
15.
Kateřina Sukačová Radka Kočí Milena Žídková Tomáš Vítěz Martin Trtílek 《International journal of phytoremediation》2017,19(10):909-914
Eutrophication of water by nutrient pollution remains an important environmental issue. The aim of this study was to evaluate the nutrient uptake capacity of an algal biofilm as a means to treat polluted water. In addition, the study investigated the nutrient removal process. The algal biofilm was able to remove 99% of phosphorus within 24 hours of P addition, with the PO4-P concentration in inflowing water ranging from 3 to 10 mg L?1. Different patterns of phosphorus and nitrogen removal were observed. Daily quantity of removed NO3-N ranged from 2 to 25% and was highly dependent on solar irradiance. Precipitation of phosphorus during the removal process was studied using X-ray diffraction analyses and was not confirmed in the biofilm. The biofilm system we constructed has a high efficiency for phosphorus removal and, therefore, has great potential for integration into wastewater treatment processes. 相似文献
16.
Franca Lisa Brancatisano Giuseppantonio Maisetta Mariagrazia Di Luca Semih Esin Daria Bottai Ranieri Bizzarri 《Biofouling》2014,30(4):435-446
Staphylococcus epidermidis plays a major role in biofilm-related medical device infections. Herein the anti-biofilm activity of the human liver-derived antimicrobial peptide hepcidin 20 (hep20) was evaluated against polysaccharide intercellular adhesin (PIA)-positive and PIA-negative clinical isolates of S. epidermidis. Hep20 markedly inhibited biofilm formation and bacterial cell metabolism of PIA-positive and PIA-negative strains, but the decrease in biofilm biomass only partially correlated with a decrease in viable bacteria. Confocal microscope images revealed that, in the presence of hep20, both PIA-positive and PIA-negative strains formed biofilms with altered architectures and reduced amounts of extracellular matrix. Co-incubation of hep20 with vancomycin produced no synergistic effect, evaluated as number of viable cells, both in preventing biofilm formation and in treating preformed biofilms. In contrast, biofilms obtained in the presence of hep20, and then exposed to vancomycin, displayed an increased susceptibility to vancomycin. These results suggest that hep20 may inhibit the production/accumulation of biofilm extracellular matrix. 相似文献
17.
AIM: To study the effect of antiseptics on bacterial biofilm formation. METHODS AND RESULTS: Biofilm formation and planktonic growth were tested in microtiter plates in the presence of antiseptics. For Escherichia coli G1473 in the presence of chlorhexidine or benzalkonium chloride, for Klebsiella pneumoniae CF504 in the presence of chlorhexidine and for Pseudomonas aeruginosa PAO1 in the presence of benzalkonium chloride, biofilm development and planktonic growth were affected at the same concentrations of antiseptics. For PAO1 in the presence of chlorhexidine and CF504 in the presence of benzalkonium chloride, planktonic growth was significantly inhibited by a fourfold lower antiseptic concentration than biofilm development. For Staphylococcus epidermidis CIP53124 in the presence of antiseptics at the minimal inhibitory concentration (MIC), a total inhibition of biofilm formation was observed. For Staph. epidermidis exposed to chlorhexidine at 1/2, 1/4 and 1/8 MIC, or to benzalkonium chloride at 1/8, 1/16 or 1/32 MIC, biofilm formation was increased from 11.4% to 22.5% without any significant effect onto planktonic growth. CONCLUSIONS: Chlorhexidine and benzalkonium chloride inhibited biofilm formation of different bacterial species but were able to induce biofilm development for the Staph. epidermidis CIP53124 strain at sub-MICs. SIGNIFICANCE AND IMPACT OF THE STUDY: Sublethal exposure to cationic antiseptics may contribute to the persistence of staphylococci through biofilm induction. 相似文献
18.
Iron removal from serum transferrin by various chelators has been studied by gel electrophoresis, which allows direct quantitation of all four forms of transferrin (diferric, C-monoferric, N-monoferric, and apotransferrin). Large cooperativity between the two lobes of serum transferrin is found for iron removal by several different chelators near physiological conditions (pH 7.4, 37 °C, 150 mM NaCl, 20 mM NaHCO3). This cooperativity is manifested in a dramatic decrease in the rate of iron removal from the N-monoferric transferrin as compared with iron removal from the other forms of ferric transferrin. Cooperativity is diminished as the pH is decreased; it is also very sensitive to changes in chloride ion concentration, with a maximum cooperativity at 150 mM NaCl. A mechanism is proposed that requires closure of the C-lobe before iron removal from the N-lobe can be effected; the open conformation of the C-lobe blocks a kinetically significant anion-binding site of the N-lobe, preventing its opening. Physiological implications of this cooperativity are discussed. 相似文献
19.
Structural and metabolic responses of Staphylococcus aureus biofilms to hyperosmotic and antibiotic stress 下载免费PDF全文
Mia M. Kiamco Abdelrhman Mohamed Patrick N. Reardon Carrie L. Marean‐Reardon Wrya M. Aframehr Douglas R. Call Haluk Beyenal Ryan S. Renslow 《Biotechnology and bioengineering》2018,115(6):1594-1603
20.
《Bioorganic & medicinal chemistry letters》2014,24(21):5076-5080
Staphylococcus aureus and Staphylococcus epidermidis are recognized as the most frequent cause of biofilm-associated nosocomial and indwelling medical device infections. Biofilm-associated infections are known to be highly resistant to our current arsenal of clinically used antibiotics and antibacterial agents. To exacerbate this problem, no therapeutic option exists that targets biofilm-dependent machinery critical to Staphylococcal biofilm formation and maintenance. Here, we describe the discovery of a series of quinoline small molecules that demonstrate potent biofilm dispersal activity against methicillin-resistant S. aureus and S. epidermidis using a scaffold hopping strategy. This interesting class of quinolines also has select synthetic analogues that demonstrate potent antibacterial activity and biofilm inhibition against S. aureus and S. epidermidis. 相似文献