共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of dominant markers such as amplified fragment length polymorphism (AFLP) for population genetics analyses is often impeded by the lack of appropriate computer programs and rarely motivated by objective considerations. The point of the present note is twofold: (i) we describe how the computer program Geneland designed to infer population structure has been adapted to deal with dominant markers; and (ii) we use Geneland for numerical comparison of dominant and codominant markers to perform clustering. AFLP markers lead to less accurate results than bi-allelic codominant markers such as single nucleotide polymorphisms (SNP) markers but this difference becomes negligible for data sets of common size (number of individuals n≥100, number of markers L≥200). The latest Geneland version (3.2.1) handling dominant markers is freely available as an R package with a fully clickable graphical interface. Installation instructions and documentation can be found on http://www2.imm.dtu.dk/~gigu/Geneland. 相似文献
2.
MATTHIEU FOLL MARTIN C. FISCHER GERALD HECKEL LAURENT EXCOFFIER 《Molecular ecology》2010,19(21):4638-4647
In the last decade, amplified fragment length polymorphisms (AFLPs) have become one of the most widely used molecular markers to study the genetic structure of natural populations. Most of the statistical methods available to study the genetic structure of populations using AFLPs consider these markers as dominant and are thus unable to distinguish between individuals being heterozygous or homozygous for the dominant allele. Some attempts have been made to treat AFLPs as codominant markers by using AFLP band intensities to infer the most likely genotype of each individual. These two approaches have some drawbacks, the former discarding potentially valuable information and the latter being sometimes unable to correctly assign genotypes to individuals. In this study, we propose an alternative likelihood‐based approach, which does not attempt at inferring the genotype of each individual, but rather incorporate the uncertainty about genotypes into a Bayesian framework leading to the estimation of population‐specific FIS and FST coefficients. We show with simulations that the accuracy of our method is much higher than one using AFLP as dominant markers and is generally close to what would be obtained by using the same number of Single‐Nucleotide Polymorphism (SNP) markers. The method is applied to a data set of four populations of the common vole (Microtus arvalis) from Grisons in Switzerland, for which we obtained 562 polymorphic AFLP markers. Our approach is very general and has the potential to make AFLP markers as useful as SNP data for nonmodel species. 相似文献
3.
Over the past decades, the use of molecular markers has revolutionized biology and led to the foundation of a new research discipline-phylogeography. Of particular interest has been the inference of population structure and biogeography. While initial studies focused on mtDNA as a molecular marker, it has become apparent that selection and genealogical lineage sorting could lead to erroneous inferences. As it is not clear to what extent these forces affect a given marker, it has become common practice to use the combined evidence from a set of molecular markers as an attempt to recover the signals that approximate the true underlying demography. Typically, the number of markers used is determined by either budget constraints or by statistical power required to recognize significant population differentiation. Using microsatellite markers from Drosophila and humans, we show that even large numbers of loci (>50) can frequently result in statistically well-supported, but incorrect inference of population structure using the software BAPS. Most importantly, genomic features, such as chromosomal location, variability of the markers, or recombination rate, cannot explain this observation. Instead, it can be attributed to sampling variation among loci with different realizations of the stochastic lineage sorting. This phenomenon is particularly pronounced for low levels of population differentiation. Our results have important implications for ongoing studies of population differentiation, as we unambiguously demonstrate that statistical significance of population structure inferred from a random set of genetic markers cannot necessarily be taken as evidence for a reliable demographic inference. 相似文献
4.
Amplified Fragment Length Polymorphism (AFLP) as a source of genetic markers for red algae 总被引:7,自引:0,他引:7
A recent PCR-based fingerprinting technique, amplified fragment length polymorphism (AFLP), was successfully applied to the
red alga Chondrus crispus Stackh. This is apparently the first account to describe the application of AFLP methodology to
an alga. Six isolates of C. crispus were analyzed by AFLP. A total of twenty-five primer pairs were screened and six primer
pairs were selected for further investigation. Both conservative and variable markers were identified within and between populations;
some markers were unique to individuals. As such, AFLP should prove useful as a source of genetic markers in algae for applications
as diverse as genome mapping to population genetic investigations.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
5.
A moment-based method for estimating a measure of population diversity, theta or Wright's FST, is given for dominant markers such as amplified fragment length polymorphisms (AFLPs) or RAPDs in noninbred populations. Basic assumptions are that there is random mating, Hardy-Weinberg equilibrium, linkage equilibrium, no mutation from common ancestor and equally distant populations. It is based on the variances between and within populations of genotype frequencies, whereas previously moment methods for dominant markers have been indirect in that they have been based on first estimating allele frequencies and then using the variances of those frequencies. The use of genotype frequencies directly appears to be more robust. Approximate sampling errors of the estimates are given. Methods are extended to estimate genetic distances and their sampling errors. The AFLP data from samples of breeds of pig are used for illustration. 相似文献
6.
AFLP (amplified fragment length polymorphism) analysis was applied toArmillaria ostoyae isolates (single-spore isolates and field isolates from the same forest). For detection of AFLP, we have developed a modified
method using DNA sequencer with Texas Red-labeled selective primer. In analysis of single-spore isolates, this technique provided
large numbers of highly polymorphic DNA markers, which can be used to identify genets. The results suggested that outbreeding
might be common inA. ostoyae. 相似文献
7.
8.
Laís Bérgamo de Souza Eduardo A. Ruas Luana A. Rodrigues Claudete F. Ruas Paulo M. Ruas 《Genetics and molecular biology》2013,36(4):533-539
Parapiptadenia rigida is a tropical early secondary succession tree characteristic of the Tropical Atlantic Rainforest. This species is of great ecological importance in the recovery of degraded areas. In this study we investigated the variability and population genetic structure of eight populations of P. rigida. Five AFLP primer combinations were used in a sample of 159 individuals representing these eight populations, rendering a total of 126 polymorphic fragments. The averages of percentage of polymorphic loci, gene diversity, and Shannon index were 60.45%, 0.217, and 0.322, respectively. A significant correlation between the population genetic variability and the population sizes was observed. The genetic variability within populations (72.20%) was higher than between these (22.80%). No perfect correlation was observed between geographic and genetic distances, which might be explained by differences in deforestation intensities that occurred in these areas. A dendrogram constructed by the UPGMA method revealed the formation of two clusters, these also confirmed by Bayesian analysis for the number of K cluster. These results show that it is necessary to develop urgent management strategies for the conservation of certain populations of P. rigida, while other populations still preserve reasonably high levels of genetic variability. 相似文献
9.
The appropriateness of the Amplified Fragment Length Polymorphism (AFLP) technique for investigating Chondrus crispus Stackhouse populations in the Maritime Provinces of Canada was assessed. The AFLP procedure was first subjected to reproducibility testing and three shortcomings were noted: 1) failure to reproduce band intensity between replicate runs for the same individual and primer pair; 2) failure of some bands to replicate; 3) lack of reproducibility for complete replicate runs for some individuals and primer pairs. In the last-mentioned case, the lack of reproducibility resulted in characteristic electropherograms indicative of weak reactions. These weak runs can be attributed to poor restriction digest/ligation reactions and/or substandard PCR, these failures ultimately resulting from low and inconsistent DNA quality. We recommend that reproducibility testing should be completed routinely in studies using the AFLP technique. In the current work, only fragments and individuals that gave reproducible results were used in subsequent analyses. The AFLP method resulted in highly variable markers within and between the populations of C. crispus included in this investigation, which prevented successful resolution of population structure. This situation could result from a lack of suitability for AFLP markers in population genetic studies, and/or too extensive genetic variation for C. crispus populations to be discerned by the AFLP technique. These two possible explanations are discussed. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
10.
AFLP markers were used to investigate the population genetic differentiation among populations of Sebastes schlegelii from China and Japan. A total of 405 bands were amplified for 180 individuals from 9 populations by 3 pairs of selective primers. S. schlegelii exhibited high Nei's gene diversity with an average value of 0.29 for all populations. No significant genealogical branches or clusters corresponding to sampling localities were detected by UPGMA tree. The results of AMOVA analysis and pairwise FST values showed no genetic divergence among different geographic populations. The result of STRUCTURE demonstrated all populations of S. schlegelii examined in the study shared one single gene pool. 相似文献
11.
CAROLINE V. DUFFIE TRAVIS C. GLENN†‡ F. HERNAN VARGAS§¶ PATRICIA G. PARKER 《Molecular ecology》2009,18(10):2103-2111
We assessed colony- and island-level genetic differentiation for the flightless cormorant ( Phalacrocorax harrisi ), an endangered Galápagos endemic that has one of the most limited geographical distributions of any seabird, consisting of only two adjacent islands. We screened 223 individuals from both islands and nine colonies at five microsatellite loci, recovering 23 alleles. We found highly significant genetic differentiation throughout the flightless cormorant's range on Fernandina and Isabela Islands (global F ST = 0.097; P < 0.0003) both between islands (supported by Bayesian analyses, F ST and R ST values) and within islands (supported only by F ST and R ST values). An overall pattern of isolation-by-distance was evident throughout the sampled range ( r = 0.4169, one-sided P ≤ 0.02) and partial Mantel tests of this relationship confirmed that ocean is a dispersal barrier ( r = 0.500, one-sided P ≤ 0.003), especially across the 5-km gap between the two islands. The degree of detected genetic differentiation among colonies is surprising, given the flightless cormorant's limited range, and suggests a role for low vagility, behavioural philopatry, or both to limit dispersal where physical barriers are absent. We argue that this population should be managed as at least two genetic populations to better preserve the species-level genetic diversity, but, for demographic reasons, advocate the continued conservation of all breeding colonies. 相似文献
12.
Identification and quantification of spatial genetic structure (SGS) within populations remains a central element of understanding population structure at the local scale. Understanding such structure can inform on aspects of the species' biology, such as establishment patterns and gene dispersal distance, in addition to sampling design for genetic resource management and conservation. However, recent work has identified that variation in factors such as sampling methodology, population characteristics and marker system can all lead to significant variation in SGS estimates. Consequently, the extent to which estimates of SGS can be relied on to inform on the biology of a species or differentiate between experimental treatments is open to doubt. Following on from a recent report of unusually extensive SGS when assessed using amplified fragment length polymorphisms in the tree Fagus sylvatica, we explored whether this marker system led to similarly high estimates of SGS extent in other apparently similar populations of this species. In the three populations assessed, SGS extent was even stronger than this previously reported maximum, extending up to 360 m, an increase in up to 800% in comparison with the generally accepted maximum of 30-40 m based on the literature. Within this species, wide variation in SGS estimates exists, whether quantified as SGS intensity, extent or the Sp parameter. Consequently, we argue that greater standardization should be applied in sample design and SGS estimation and highlight five steps that can be taken to maximize the comparability between SGS estimates. 相似文献
13.
TILMAN J. ALPERMANN BÁNK BESZTERI UWE JOHN URBAN TILLMANN ALLAN D. CEMBELLA 《Molecular ecology》2009,18(10):2122-2133
Genotypic or phenotypic markers for characterization of natural populations of marine microalgae have typically addressed questions regarding differentiation among populations, usually with reference to a single or few clonal isolates. Based upon a large number of contemporaneous isolates from the same geographical population of the toxigenic species Alexandrium tamarense from the North Sea, we uncovered significant genetic substructure and low but significant multilocus linkage disequilibrium (LD) within the planktonic population. Between the alternative molecular genotyping approaches, only amplified fragment length polymorphism (AFLP) revealed cryptic genetic population substructure by Bayesian clustering, whereas microsatellite markers failed to yield concordant patterns. Both markers, however, gave evidence for genetic differentiation of population subgroups as defined by AFLP. A considerable portion of multilocus LD could be attributed to population subdivision. The remaining LD within population subgroups is interpreted as an indicator of frequency shifts of clonal lineages during vegetative growth of planktonic populations. Phenotypic characters such as cellular content and composition of neurotoxins associated with paralytic shellfish poisoning (PSP) and allelochemical properties may contribute to intra- or inter-annual differentiation of planktonic populations, if clonal lineages that express these characters are selectively favoured. Nevertheless, significant phenotypic differentiation for these characters among the genetically differentiated subgroups was only detected for PSP toxin content in two of the four population subgroups. By integrating the analysis of phenotypic and genotypic characteristics, we developed a conceptual population genetic model to explain the importance of life-cycle dynamics and transitions in the evolutionary ecology of these dinoflagellates. 相似文献
14.
The inference of population genetic structures is essential in many research areas in population genetics, conservation biology and evolutionary biology. Recently, unsupervised Bayesian clustering algorithms have been developed to detect a hidden population structure from genotypic data, assuming among others that individuals taken from the population are unrelated. Under this assumption, markers in a sample taken from a subpopulation can be considered to be in Hardy-Weinberg and linkage equilibrium. However, close relatives might be sampled from the same subpopulation, and consequently, might cause Hardy-Weinberg and linkage disequilibrium and thus bias a population genetic structure analysis. In this study, we used simulated and real data to investigate the impact of close relatives in a sample on Bayesian population structure analysis. We also showed that, when close relatives were identified by a pedigree reconstruction approach and removed, the accuracy of a population genetic structure analysis can be greatly improved. The results indicate that unsupervised Bayesian clustering algorithms cannot be used blindly to detect genetic structure in a sample with closely related individuals. Rather, when closely related individuals are suspected to be frequent in a sample, these individuals should be first identified and removed before conducting a population structure analysis. 相似文献
15.
We investigated plant reproduction in relation to genetic structure, population size, and habitat quality in 13 populations of the rare biennial plant Pedicularis palustris with 3-28500 flowering individuals. We used AFLP (amplified fragment length polymorphism) profiles to analyze genetic similarities among 129 individuals (3-15 per population). In a cluster analysis of genetic similarities most individuals (67%) were arranged in population-specific clusters. Analysis of molecular variance indicated significant genetic differentiation among populations and among and within subpopulations (P < 0.001). Gene flow (N(e) m) was low (0.298). On average, plants produced 55 capsules, 17 seeds per fruit, and 42 seedlings in the following growing season. The number of seeds per capsule was independent of population size and of genetic variability. In contrast, the number of capsules per plant (P < 0.05) and the number of seedlings per plant (P < 0.05) were positively correlated with population size. The relation between population size and the number of seeds per plant was not significant (P = 0.075). The number of capsules and of seeds and seedlings per plant (P < 0.01) were positively correlated with genetic variability. Genetic variability was independent of actual population size, suggesting that historical population processes have to be taken into account, too. Stepwise multiple regressions revealed additional significant relationships of habitat parameters (soil pH, C:N ratio), vegetation composition, and standing crop on reproductive components. We conclude that populations of P. palustris are genetically isolated and that reproductive success most likely is influenced by population size, genetic variability, and habitat quality. Management strategies such as moderate grazing, mowing, and artificial gene flow should endeavor to increase population size as well as genetic variation. 相似文献
16.
Jian-Yong Liu Zhao-Rong Lun Jun-Bin Zhang Ting-Bao Yang 《Biochemical Systematics and Ecology》2009,37(4):266-274
The striped mullet, Mugil cephalus, is an economically important species for both aquaculture and commercial fisheries in China. In this study, the amplified fragment length polymorphism (AFLP) technique was employed to analyze population genetic diversity and genetic distance between different populations with the aim of elucidating the population structure and gene flow of M. cephalus along the coast of China. A total of 230 fragments with 150–500 bp were identified from 118 individuals by five AFLP primer combinations. The polymorphic loci within populations varied from 46.52% to 64.78%, with an average of 53.91%, and the average heterozygosity from 0.1829 to 0.2282, with an average of 0.2074. The UPGMA phenograms of 118 individuals were constructed based on Dice similarity coefficients and four clusters were recognized. AMOVA analysis revealed that 60.7% of genetic variations were within populations and 39.3% between populations. The estimated genetic distance (φST) value over all polymorphic loci across the six populations was 0.393 (p < 0.0010), indicating a strong population structuring. The pairwise φST value ranged from 0.1112 to 0.5358, with an average of 0.3693. The population pairwise gene flows (average Nm = 0.73) are low. In addition, the result of the Mantel test showed that there was a significant correlation between geographic and genetic distances (r = 0.5434, p = 0.0050). It was speculated that there exist at least four distinct geographic populational subdivisions of M. cephalus along the Chinese coast. This research has provided new molecular data which will aid our understanding of the genetic structure of this species. 相似文献
17.
Xu-hui Chen Yu-bao Gao Nian-xi Zhao Ting-ting Zhao Min-jie Zhu 《Biochemical Systematics and Ecology》2009,37(4):395-401
Genetic diversity and structure of five natural populations of Caragana microphylla from the Inner Mongolia steppe were estimated using AFLP markers. Five pairs of primers generated a total of 312 bands among 90 individuals, with percentage of polymorphic bands (PPB) being 63% at the population level and 76% at the species level, respectively. The genetic diversity within populations was correlated significantly with the soil N:P ratio. AMOVA analysis revealed high genetic variations within populations (95.5%). The estimated number of migrants per generation (Nm) was 10.72, indicating a high level of gene flow among populations. There was no significant correlation (r = 0.36) between genetic distance and geographical distance. These results were discussed in terms of eco-geographical variations among populations, together with the life history traits and breeding system of the species. The knowledge obtained may have important implications for better conservation and wise use of the vegetation dominate by C. microphylla. 相似文献
18.
Population genetic structure of Arabidopsis lyrata in Europe 总被引:2,自引:0,他引:2
Population genetic theory predicts that the self-incompatible and perennial herb, Arabidopsis lyrata, will have a genetic structure that differs from the self-fertilizing, annual Arabidopsis thaliana. We quantified the genetic structure for eight populations of A. lyrata ssp. petraea in historically nonglaciated regions of central Europe. Analysis of 20 microsatellite loci for 344 individuals demonstrated that, in accordance with predictions, diploid populations had high genome-wide heterozygosity (H(O) = 0.48; H(E) = 0.52), high within-population diversity (83% of total) compatible with mutation-drift equilibrium, and moderate differentiation among populations (F(ST) = 0.17). Within a single population, the vast majority of genetic variability (92%) was found at the smallest spatial scale (< 3 m). Although there was no evidence of biparental inbreeding or clonal propagation at this scale (F(IS) = 0.003), significant fine-scale spatial autocorrelation indicated localized gene flow presumably due to gravity dispersed seeds (Sp = 0.018). Limited gene flow between isolated population clusters (regions) separated by hundreds of kilometres has given rise to an isolation by distance pattern of diversification, with low, but significant, differentiation among regions (F(ST) = 0.05). The maintenance of geographically widespread polymorphisms and uniformly high diversity throughout central Europe is consistent with periglacial survival of A. lyrata ssp. petraea north of the Alps in steppe-tundra habitats during the last glacial maximum. As expected of northern and previously glaciated localities, A. lyrata in Iceland was genetically less diverse and highly differentiated from central Europe (H(E) = 0.37; F(ST) = 0.27). 相似文献
19.
In the last few years, dozens of studies have documented the detection of loci influenced by selection from genome scans in a wide range of non-model species. Many of those studies used amplified fragment length polymorphism (AFLP) markers, which became popular for being easily applicable to any organism. However, because they are anonymous markers, AFLPs impose many challenges for their isolation and identification. Most recent AFLP genome scans used capillary electrophoresis (CE), which adds even more obstacles to the isolation of bands with a specific size for sequencing. These caveats might explain the extremely low number of studies that moved from the detection of outlier AFLP markers to their actual isolation and characterization. We document our efforts to characterize a set of outlier AFLP markers from a previous genome scan with CE in ocellated lizards (Lacerta lepida). Seven outliers were successfully isolated, cloned and sequenced. Their sequences are noncoding and show internal indels or polymorphic repetitive elements (microsatellites). Three outliers were converted into codominant markers by using specific internal primers to sequence and screen population variability from undigested DNA. Amplification in closely related lizard species was also achieved, revealing remarkable interspecific conservation in outlier loci sequences. We stress the importance of following up AFLP genome scans to validate selection signatures of outlier loci, but also report the main challenges and pitfalls that may be faced during the process. 相似文献