首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given recent advances in the field of molecular genetics, many have recognized the need to exploit either study designs or analytical methods to test hypotheses with gene-by-environment (G x E) interactions. The partial-collection designs, including case-only, partial case-control, and case-parent trio designs, have been suggested as attractive alternatives to the complete case-control design both for increased statistical efficiency and reduced data needs. However, common problems in genetic epidemiology studies, such as, presence of G x E correlation in the population, population mixture, and genotyping error may reduce the validity of these designs. On the basis of previous simulation studies and empirical data and given the potential limitations and uncertainty of assumptions of partial-collection designs, the case-control design is the optimal choice versus partial-collection designs.  相似文献   

2.
The supplemented case-control design consists of a case-control sample and of an additional sample of disease-free subjects who arise from a given stratum of one of the measured exposures in the case-control study. The supplemental data might, for example, arise from a population survey conducted independently of the case-control study. This design improves precision of estimates of main effects and especially of joint exposures, particularly when joint exposures are uncommon and the prevalence of one of the exposures is low. We first present a pseudo-likelihood estimator (PLE) that is easy to compute. We further adapt two-phase design methods to find maximum likelihood estimates (MLEs) for the log odds ratios for this design and derive asymptotic variance estimators that appropriately account for the differences in sampling schemes of this design from that of the traditional two-phase design. As an illustration of our design we present a study that was conducted to assess the influence to joint exposure of hepatitis-B virus (HBV) and hepatitis-C virus (HCV) infection on the risk of hepatocellular carcinoma in data from Qidong County, Jiangsu Province, China.  相似文献   

3.
Wang S  Yu Z  Miller RL  Tang D  Perera FP 《Human heredity》2011,71(3):196-208
Genomic imprinting is a form of epigenetic regulation in mammals in which the same allele of a gene is expressed differently depending on the parental origin of the allele. Traditionally, the detection of imprinted genes that affect complex diseases has been focused on linkage designs with pedigrees or case-parent designs with case-parent trios. In the past two decades, the birth cohort design with mother-offspring pairs has been applied to understand better the effect of environmental influences during pregnancy and beginning of life on the growth and development of children. No work has been done on the detection of imprinted genes using birth cohort designs. Moreover, although the importance of imprinting has been well recognized, no study has looked at how environmental exposures modify the effects of imprinted genes. In this study, we show that the proposed imprinting test using the birth cohort design with mother-offspring pairs is an efficient test for testing the interactions between imprinted genes and environmental exposures. Through extensive simulation studies and a real data application, the proposed imprinting test has demonstrated much improved power in detecting gene-environment interactions than that of a test assuming the Mendelian dominant model when the true underlying genetic model is imprinting.  相似文献   

4.
In population-based case-control association studies, the regular chi (2) test is often used to investigate association between a candidate locus and disease. However, it is well known that this test may be biased in the presence of population stratification and/or genotyping error. Unlike some other biases, this bias will not go away with increasing sample size. On the contrary, the false-positive rate will be much larger when the sample size is increased. The usual family-based designs are robust against population stratification, but they are sensitive to genotype error. In this article, we propose a novel method of simultaneously correcting for the bias arising from population stratification and/or for the genotyping error in case-control studies. The appropriate corrections depend on sample odds ratios of the standard 2x3 tables of genotype by case and control from null loci. Therefore, the test is simple to apply. The corrected test is robust against misspecification of the genetic model. If the null hypothesis of no association is rejected, the corrections can be further used to estimate the effect of the genetic factor. We considered a simulation study to investigate the performance of the new method, using parameter values similar to those found in real-data examples. The results show that the corrected test approximately maintains the expected type I error rate under various simulation conditions. It also improves the power of the association test in the presence of population stratification and/or genotyping error. The discrepancy in power between the tests with correction and those without correction tends to be more extreme as the magnitude of the bias becomes larger. Therefore, the bias-correction method proposed in this article should be useful for the genetic analysis of complex traits.  相似文献   

5.
Studies of genetic contributions to risk can be family-based, such as the case-parents design, or population-based, such as the case-control design. Both provide powerful inference regarding associations between genetic variants and risks, but both have limitations. The case-control design requires identifying and recruiting appropriate controls, but it has the advantage that nongenetic risk factors like exposures can be assessed. For a condition with an onset early in life, such as a birth defect, one should also genotype the mothers of cases and the mothers of controls to avoid potential confounding due to maternally mediated genetic effects acting on the fetus during gestation. The case-parents approach is less vulnerable than the case-mother/control-mother approach to biases due to population structure and self-selection. The case-parents approach also allows access to epigenetic phenomena like imprinting, but it cannot evaluate the role of nongenetic cofactors like exposures. We propose a hybrid design based on augmenting a set of affected individuals and their parents with a set of unaffected, unrelated individuals and their parents. The affected individuals and their parents are all genotyped, whereas only the parents of unaffected individuals are genotyped, although exposures are ascertained for both affected and unaffected offspring. The proposed hybrid design, through log-linear, likelihood-based analysis, allows estimation of the relative risk parameters, can provide more power than either the case-parents approach or the case-mother/control-mother approach, permits straightforward likelihood-ratio tests for bias due to mating asymmetry or population stratification, and admits valid alternative analyses when mating is asymmetric or when population stratification is detected.  相似文献   

6.
Efficiency of cohort sampling designs: some surprising results.   总被引:3,自引:0,他引:3  
B Langholz  D C Thomas 《Biometrics》1991,47(4):1563-1571
Cohort sampling designs are proposed which one would intuitively expect to be more efficient than nested case-control sampling. Two of these designs start with a nested case-control sample and distribute controls to sampled risk sets other than those for which they were picked. The third design has the goal of maximizing the number of distinct persons in a nested case-control sample. Simulation results show surprisingly little gain, and more often a loss in efficiency of these new designs relative to nested case-control sampling. This is due to the sampling-induced covariance between score terms. We conclude that the often stated intuition that nested case-control sampling does not make good use of sampled individuals' covariate histories is false.  相似文献   

7.
B I Graubard  T R Fears  M H Gail 《Biometrics》1989,45(4):1053-1071
We consider population-based case-control designs in which controls are selected by one of three cluster sampling plans from the entire population at risk. The effects of cluster sampling on classical epidemiologic procedures are investigated, and appropriately modified procedures are developed. In particular, modified procedures for testing the homogeneity of odds ratios across strata, and for estimating and testing a common odds ratio are presented. Simulations that use the data from the 1970 Health Interview Survey as a population suggest that classical procedures may be fairly robust in the presence of cluster sampling. A more extreme example based on a mixed multinomial model clearly demonstrates that the classical Mantel-Haenszel (1959, Journal of the National Cancer Institute 22, 719-748) and Woolf-Haldane tests of no exposure effect may have sizes exceeding nominal levels and confidence intervals with less than nominal coverage under an alternative hypothesis. Classical estimates of odds ratios may also be biased with non-self-weighting cluster samples. The modified procedures we propose remedy these defects.  相似文献   

8.
We report the development and validation of experimental methods, study designs, and analysis software for pooling-based genomewide association (GWA) studies that use high-throughput single-nucleotide-polymorphism (SNP) genotyping microarrays. We first describe a theoretical framework for establishing the effectiveness of pooling genomic DNA as a low-cost alternative to individually genotyping thousands of samples on high-density SNP microarrays. Next, we describe software called "GenePool," which directly analyzes SNP microarray probe intensity data and ranks SNPs by increased likelihood of being genetically associated with a trait or disorder. Finally, we apply these methods to experimental case-control data and demonstrate successful identification of published genetic susceptibility loci for a rare monogenic disease (sudden infant death with dysgenesis of the testes syndrome), a rare complex disease (progressive supranuclear palsy), and a common complex disease (Alzheimer disease) across multiple SNP genotyping platforms. On the basis of these theoretical calculations and their experimental validation, our results suggest that pooling-based GWA studies are a logical first step for determining whether major genetic associations exist in diseases with high heritability.  相似文献   

9.
We describe three statistical results that we have found to be useful in case-control genetic association testing. All three involve combining the discovery of novel genetic variants, usually by sequencing, with genotyping methods that recognize previously discovered variants. We first consider expanding the list of known variants by concentrating variant-discovery in cases. Although the naive inclusion of cases-only sequencing data would create a bias, we show that some sequencing data may be retained, even if controls are not sequenced. Furthermore, for alleles of intermediate frequency, cases-only sequencing with bias-correction entails little if any loss of power, compared to dividing the same sequencing effort among cases and controls. Secondly, we investigate more strongly focused variant discovery to obtain a greater enrichment for disease-related variants. We show how case status, family history, and marker sharing enrich the discovery set by increments that are multiplicative with penetrance, enabling the preferential discovery of high-penetrance variants. A third result applies when sequencing is the primary means of counting alleles in both cases and controls, but a supplementary pooled genotyping sample is used to identify the variants that are very rare. We show that this raises no validity issues, and we evaluate a less expensive and more adaptive approach to judging rarity, based on group-specific variants. We demonstrate the important and unusual caveat that this method requires equal sample sizes for validity. These three results can be used to more efficiently detect the association of rare genetic variants with disease.  相似文献   

10.
We have developed a robust microarray genotyping chip that will help advance studies in genetic epidemiology. In population-based genetic association studies of complex disease, there could be hidden genetic substructure in the study populations, resulting in false-positive associations. Such population stratification may confound efforts to identify true associations between genotype/haplotype and phenotype. Methods relying on genotyping additional null single nucleotide polymorphism (SNP) markers have been proposed, such as genomic control (GC) and structured association (SA), to correct association tests for population stratification. If there is an association of a disease with null SNPs, this suggests that there is a population subset with different genetic background plus different disease susceptibility. Genotyping over 100 null SNPs in the large numbers of patient and control DNA samples that are required in genetic association studies can be prohibitively expensive. We have therefore developed and tested a resequencing chip based on arrayed primer extension (APEX) from over 2000 DNA probe features that facilitate multiple interrogations of each SNP, providing a powerful, accurate, and economical means to simultaneously determine the genotypes at 110 null SNP loci in any individual. Based on 1141 known genotypes from other research groups, our GC SNP chip has an accuracy of 98.5%, including non-calls.  相似文献   

11.
Advances in human genetics have led to epidemiological investigations not only of the effects of genes alone but also of gene-environment (G-E) interaction. A widely accepted design strategy in the study of how G-E relate to disease risks is the population-based case-control study (PBCCS). For simple random samples, semiparametric methods for testing G-E have been developed by Chatterjee and Carroll in 2005. The use of complex sampling in PBCCS that involve differential probabilities of sample selection of cases and controls and possibly cluster sampling is becoming more common. Two complexities, weighting for selection probabilities and intracluster correlation of observations, are induced by the complex sampling. We develop pseudo-semiparametric maximum likelihood estimators (pseudo-SPMLE) that apply to PBCCS with complex sampling. We study the finite sample performance of the pseudo-SPMLE using simulations and illustrate the pseudo-SPMLE with a US case-control study of kidney cancer.  相似文献   

12.
Linkage mapping of complex diseases is often followed by association studies between phenotypes and marker genotypes through use of case-control or family-based designs. Given fixed genotyping resources, it is important to know which study designs are the most efficient. To address this problem, we extended the likelihood-based method of Li et al., which assesses whether there is linkage disequilibrium between a disease locus and a SNP, to accommodate sibships of arbitrary size and disease-phenotype configuration. A key advantage of our method is the ability to combine data from different family structures. We consider scenarios for which genotypes are available for unrelated cases, affected sib pairs (ASPs), or only one sibling per ASP. We construct designs that use cases only and others that use unaffected siblings or unrelated unaffected individuals as controls. Different combinations of cases and controls result in seven study designs. We compare the efficiency of these designs when the number of individuals to be genotyped is fixed. Our results suggest that (1) when the disease is influenced by a single gene, the one sibling per ASP-control design is the most efficient, followed by the ASP-control design, and familial cases contribute more association information than singleton cases; (2) when the disease is influenced by multiple genes, familial cases provide more association information than singleton cases, unless the effect of the locus being tested is much smaller than at least one other untested disease locus; and (3) the case-control design can be useful for detecting genes with small effect in the presence of genes with much larger effect. Our findings will be helpful for researchers designing and analyzing complex disease-association studies and will facilitate genotyping resource allocation.  相似文献   

13.
Cohort and nested case-control (NCC) designs are frequently used in pharmacoepidemiology to assess the associations of drug exposure that can vary over time with the risk of an adverse event. Although it is typically expected that estimates from NCC analyses are similar to those from the full cohort analysis, with moderate loss of precision, only few studies have actually compared their respective performance for estimating the effects of time-varying exposures (TVE). We used simulations to compare the properties of the resulting estimators of these designs for both time-invariant exposure and TVE. We varied exposure prevalence, proportion of subjects experiencing the event, hazard ratio, and control-to-case ratio and considered matching on confounders. Using both designs, we also estimated the real-world associations of time-invariant ever use of menopausal hormone therapy (MHT) at baseline and updated, time-varying MHT use with breast cancer incidence. In all simulated scenarios, the cohort-based estimates had small relative bias and greater precision than the NCC design. NCC estimates displayed bias to the null that decreased with a greater number of controls per case. This bias markedly increased with higher proportion of events. Bias was seen with Breslow's and Efron's approximations for handling tied event times but was greatly reduced with the exact method or when NCC analyses were matched on confounders. When analyzing the MHT-breast cancer association, differences between the two designs were consistent with simulated data. Once ties were taken correctly into account, NCC estimates were very similar to those of the full cohort analysis.  相似文献   

14.
The power of genomic control   总被引:16,自引:0,他引:16       下载免费PDF全文
Although association analysis is a useful tool for uncovering the genetic underpinnings of complex traits, its utility is diminished by population substructure, which can produce spurious association between phenotype and genotype within population-based samples. Because family-based designs are robust against substructure, they have risen to the fore of association analysis. Yet, if population substructure could be ignored, this robustness can come at the price of power. Unfortunately it is rarely evident when population substructure can be ignored. Devlin and Roeder recently have proposed a method, termed "genomic control" (GC), which has the robustness of family-based designs even though it uses population-based data. GC uses the genome itself to determine appropriate corrections for population-based association tests. Using the GC method, we contrast the power of two study designs, family trios (i.e., father, mother, and affected progeny) versus case-control. For analysis of trios, we use the TDT test. When population substructure is absent, we find GC is always more powerful than TDT; furthermore, contrary to previous results, we show that as a disease becomes more prevalent the discrepancy in power becomes more extreme. When population substructure is present, however, the results are more complex: TDT is more powerful when population substructure is substantial, and GC is more powerful otherwise. We also explore general issues of power and implementation of GC within the case-control setting and find that, economically, GC is at least comparable to and often less expensive than family-based methods. Therefore, GC methods should prove a useful complement to family-based methods for the genetic analysis of complex traits.  相似文献   

15.
We consider matched case-control familial studies which match a group of patients, called "case probands," with a group of disease-free subjects, called "control probands," using a set of family-level matching variables. Family members of each proband are then recruited into the study. Of interest here is the familial aggregation of the response variable and the effects of subject-specific covariates on the response. We propose an estimating equation approach to jointly estimate the main effects and intrafamilial correlations for matched family studies with a continuous outcome. Only knowledge of the first two joint moments of the response variable is required. The induced estimators for the main effects and intrafamilial correlations are consistent and asymptotically normally distributed. We apply the proposed method to sleep apnea data. A simulation study demonstrates the usefulness of our approach.  相似文献   

16.
Methods for the analysis of unmatched case-control data based on a finite population sampling model are developed. Under this model, and the prospective logistic model for disease probabilities, a likelihood for case-control data that accommodates very general sampling of controls is derived. This likelihood has the form of a weighted conditional logistic likelihood. The flexibility of the methods is illustrated by providing a number of control sampling designs and a general scheme for their analyses. These include frequency matching, counter-matching, case-base, randomized recruitment, and quota sampling. A study of risk factors for childhood asthma illustrates an application of the counter-matching design. Some asymptotic efficiency results are presented and computational methods discussed. Further, it is shown that a 'marginal' likelihood provides a link to unconditional logistic methods. The methods are examined in a simulation study that compares frequency and counter-matching using conditional and unconditional logistic analyses and indicate that the conditional logistic likelihood has superior efficiency. Extensions that accommodate sampling of cases and multistage designs are presented. Finally, we compare the analysis methods presented here to other approaches, compare counter-matching and two-stage designs, and suggest areas for further research.To whom correspondence should be addressed.  相似文献   

17.
Selective genotyping is common because it can increase the expected correlation between QTL genotype and phenotype and thus increase the statistical power of linkage tests (i.e., regression-based tests). Linkage can also be tested by assessing whether the marginal genotypic distribution conforms to its expectation, a marginal-based test. We developed a class of joint tests that, by constraining intercepts in regression-based analyses, capitalize on the information available in both regression-based and marginal-based tests. We simulated data corresponding to the null hypothesis of no QTL effect and the alternative of some QTL effect at the locus for a backcross and an F2 intercross between inbred strains. Regression-based and marginal-based tests were compared to corresponding joint tests. We studied the effects of random sampling, selective sampling from a single tail of the phenotypic distribution, and selective sampling from both tails of the phenotypic distribution. Joint tests were nearly as powerful as all competing alternatives for random sampling and two-tailed selection under both backcross and F2 intercross situations. Joint tests were generally more powerful for one-tailed selection under both backcross and F2 intercross situations. However, joint tests cannot be recommended for one-tailed selective genotyping if segregation distortion is suspected.  相似文献   

18.
OBJECTIVE: As disease-predisposing mutations are increasingly identified, there is growing need to assess the effects of lifestyle and environmental factors on disease risks in mutation carriers. Such assessment is difficult when the mutations are rare and evaluating them in large population samples is costly. METHODS: This paper describes four study designs for evaluating the effects of environmental exposures in carriers of rare disease-predisposing mutations. RESULTS: The strengths and weaknesses of the designs are assessed, and strategies for analyzing the data obtained from such designs are considered. CONCLUSIONS: When exposure effects in noncarriers are well-established and exposure is independent of carrier status in the population of disease-free controls, the case-only design provides a feasible and efficient method for inferring effects in carriers. When exposure effects in noncarriers are not well established, the most feasible design options are those that compare exposures in carrier cases to either untyped controls or to carrier controls. These two designs have complementary strengths and weaknesses; thus inferences are stronger when measures of association estimated using the two designs are consistent.  相似文献   

19.
Currently, single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) of >5% are preferentially used in case-control association studies of common human diseases. Recent technological developments enable inexpensive and accurate genotyping of a large number of SNPs in thousands of cases and controls, which can provide adequate statistical power to analyze SNPs with MAF <5%. Our purpose was to determine whether evaluating rare SNPs in case-control association studies could help identify causal SNPs for common diseases. We suggest that slightly deleterious SNPs (sdSNPs) subjected to weak purifying selection are major players in genetic control of susceptibility to common diseases. We compared the distribution of MAFs of synonymous SNPs with that of nonsynonymous SNPs (1) predicted to be benign, (2) predicted to be possibly damaging, and (3) predicted to be probably damaging by PolyPhen. Our sources of data were the International HapMap Project, ENCODE, and the SeattleSNPs project. We found that the MAF distribution of possibly and probably damaging SNPs was shifted toward rare SNPs compared with the MAF distribution of benign and synonymous SNPs that are not likely to be functional. We also found an inverse relationship between MAF and the proportion of nsSNPs predicted to be protein disturbing. On the basis of this relationship, we estimated the joint probability that a SNP is functional and would be detected as significant in a case-control study. Our analysis suggests that including rare SNPs in genotyping platforms will advance identification of causal SNPs in case-control association studies, particularly as sample sizes increase.  相似文献   

20.
Genome-wide case-control association studies aim at identifying significant differential markers between sick and healthy populations. With the development of large-scale technologies allowing the genotyping of thousands of single nucleotide polymorphisms (SNPs) comes the multiple testing problem and the practical issue of selecting the most probable set of associated markers. Several False Discovery Rate (FDR) estimation methods have been developed and tuned mainly for differential gene expression studies. However they are based on hypotheses and designs that are not necessarily relevant in genetic association studies. In this article we present a universal methodology to estimate the FDR of genome-wide association results. It uses a single global probability value per SNP and is applicable in practice for any study design, using any statistic. We have benchmarked this algorithm on simulated data and shown that it outperforms previous methods in cases requiring non-parametric estimation. We exemplified the usefulness of the method by applying it to the analysis of experimental genotyping data of three Multiple Sclerosis case-control association studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号