首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential importance of carbohydrates and amino acids as fuels during periods of fasting and aestivation in the African lungfish, Protopterus dolloi, were examined. No significant decreases in tissue glycogen levels were observed following 60 days of fasting or aestivation, suggesting lungfish may undergo 'glycogen sparing'. Yet glycogenolysis may be important during aestivation based on the differing responses of two flux-generating enzymes of the glycolytic pathway, hexokinase (HK) and pyruvate kinase (PK). PK is required for glycogen breakdown whereas HK is not. HK activity is significantly down-regulated in the heart and gill tissues during aestivation, while PK activity is sustained. The significant negative correlation between the activity of HK and glucose levels in the heart of aestivating lungfish suggests HK may be regulated by glucose concentrations. There was no indication of anaerobic glycolytic flux during aestivation as lactate did not accumulate in any of the tissues examined, and no significant induction of lactate dehydrogenase (LDH)activity was observed. The increase in glutamate dehydrogenase (GDH) and aspartate aminotransferase (Asp-AT) activities in the liver of aestivating P. dolloi suggests some energy may be obtained via increased aminoacid catabolism, leading to the generation of tricarboxylic acid (TCA) cycle intermediates. These findings indicate the importance of both carbohydrate and amino acid fuel stores during aestivation in aphylogenetically ancient, air-breathing fish.  相似文献   

2.
Green-striped burrowing frogs (Cyclorana alboguttata) can depress their resting metabolism by more than 80% during aestivation. Previous studies have shown that this species is able to withstand long periods of immobilisation during aestivation while apparently maintaining whole muscle mass and contractile performance. The aim of this study was to determine the effect of prolonged aestivation on the levels of metabolic enzymes (CCO, LDH and CS) in functionally distinct skeletal muscles (cruralis, gastrocnemius, sartorius, iliofibularis and rectus abdominus) and liver of C. alboguttata. CS activity was significantly reduced in all tissues except for the cruralis, gastrocnemius and the liver. LDH activity was significantly reduced in the sartorius and rectus abdominus, but remained at control (active) levels in the other tissues. CCO activity was significantly reduced in the gastrocnemius and rectus abdominus, and unchanged in the remaining tissues. Muscle protein was significantly reduced in the sartorius and iliofibularis during aestivation, and unchanged in the remaining muscles. The results suggest that the energy pathways involved in the production and consumption of ATP are remodelled during prolonged aestivation but selective. Remodelling and subsequent down-regulation of metabolic activity seem to target the smaller non-jumping muscles, while the jumping muscles retain enzyme activities at control levels during aestivation. These results suggest a mechanism by which aestivating C. alboguttata are able to maintain metabolic depression while ensuring that the functional capacity of critical muscles is not compromised upon emergence from aestivation.  相似文献   

3.
The metabolic organization of ketone body metabolism of liver and kidney of the goldfish Carassius auratus was assessed by measuring maximal activities, subcellular distribution, and stereoisomer preference of ketone body enzymes. These determinations indicate that the organization of ketone body metabolism in liver and kidney of goldfish differs from that of mammals in some respects. All the enzymes of ketone body metabolism were present in liver and kidney of goldfish, with the exception of hydroxymethylglutaryl-CoA (HMG-CoA) synthetase, which was not detected in liver. Two forms of beta-hydroxybutyrate dehydrogenase (betaHBDH) with different stereospecificity for beta-hydroxybutyrate (D- and L-beta-hydroxybutyrate) were detectable in liver and kidney. All of the ketone body enzymes measured in liver were mainly in the mitochondrial fraction, with the exception of D- and L-betaHBDH, which were cytosolic. In kidney, HMG-CoA synthase, together with HMG-CoA lyase and acetoacetyl CoA thiolase (AcoAT), were found mainly in the mitochondrial fraction. L-betaHBDH was mainly cytosolic in kidney, but by contrast with liver, D-betaHBDH was mainly found in the mitochondria, and SKT was distributed in both the mitochondrial and cytosolic compartments. J. Exp. Zool. 286:434-439, 2000.  相似文献   

4.
Changes in membrane lipid composition (membrane remodelling) have been associated with metabolic depression in some aestivating snails but has not been studied in aestivating frogs. This study examined the membrane phospholipid composition of two Australian aestivating frog species Cyclorana alboguttata and Cyclorana australis. The results showed no major membrane remodelling of tissue in either frog species, or in mitochondria of C. alboguttata due to aestivation. Mitochondrial membrane remodelling was not investigated in C. australis. Where investigated in C. alboguttata, total protein and phospholipid content, and citrate synthase (CS) and cytochrome c oxidase (CCO) activities in tissues and mitochondria mostly did not change with aestivation in liver. In skeletal muscle, however, CS and CCO activities, mitochondrial and tissue phospholipids, and mitochondrial protein decreased with aestivation. These decreases in muscle indicate that skeletal muscle mitochondrial content may decrease during aestivation. Na+K+ATPase activity of both frog species showed no effect of aestivation. In C. alboguttata different fat diets had a major effect on both tissue and mitochondrial phospholipid composition indicating an ability to remodel membrane composition that is not utilised in aestivation. Therefore, changes in lipid composition associated with some aestivating snails do not occur during aestivation in these Australian frogs.  相似文献   

5.
This study was undertaken to test the hypothesis that the rate of urea synthesis in Protopterus aethiopicus was up-regulated to detoxify ammonia during the initial phase of aestivation in air (day 1-day 12), and that a profound suppression of ammonia production occurred at a later phase of aestivation (day 35-day 46) which eliminated the need to sustain the increased rate of urea synthesis. Fasting apparently led to a greater rate of nitrogenous waste excretion in P. aethiopicus in water, which is an indication of increases in production of endogenous ammonia and urea probably as a result of increased proteolysis and amino acid catabolism for energy production. However, 46 days of fasting had no significant effects on the ammonia or urea contents in the muscle, liver, plasma and brain. In contrast, there were significant decreases in the muscle ammonia content in fish after 12, 34 or 46 days of aestivation in air when compared with fish fasting in water. Ammonia was apparently detoxified to urea because urea contents in the muscle, liver, plasma and brain of P. aethiopicus aestivated for 12, 34 or 46 days were significantly greater than the corresponding fasting control; the greatest increases in urea contents occurred during the initial 12 days. There were also significant increases in activities of some of the hepatic ornithine-urea cycle enzymes from fish aestivated for 12 or 46 days. Therefore, contrary to a previous report on P. aethiopicus, our results demonstrated an increase in the estimated rate of urea synthesis (2.8-fold greater than the day 0 fish) in this lungfish during the initial 12 days of aestivation. However, the estimated rate of urea synthesis decreased significantly during the next 34 days. Between day 35 and day 46 (12 days), urea synthesis apparently decreased to 42% of the day 0 control value, and this is the first report of such a phenomenon in African lungfish undergoing aestivation. On the other hand, the estimated rate of ammonia production in P. aethiopicus increased slightly (14.7%) during the initial 12 days of aestivation as compared with that in the day 0 fish. By contrast, the estimated rate of ammonia production decreased by 84% during the final 12 days of aestivation (day 35-day 46) compared with the day 0 value. Therefore, it can be concluded that P. aethiopicus depended mainly on increased urea synthesis to ameliorate ammonia toxicity during the initial phase of aestivation, but during prolonged aestivation, it suppressed ammonia production profoundly, eliminating the need to increase urea synthesis which is energy-intensive.  相似文献   

6.
This study investigates the effects of aestivation on body water content, body mass, acid mucopolysaccharide (AMPS) and some of its degrading enzymes in different tissues for some Australian desert frogs. The AMPS component of the liver, kidney, skin and cocoon alter during aestivation to help retain water, which is unchanged in most tissues of all frog species, and to protect the frogs from desiccation during extended periods of aestivation. Hepatic AMPS was unaltered in Cyclorana maini, C. platycephala and Neobatrachus sutor but increased significantly after 2 months of aestivation in C. australis. The level of AMPS in the kidney was elevated in all four frog species after 5 months of aestivation. Skin AMPS content in the skin of awake frogs decreases with aestivation period and increases in the cocoon. AMPS in the cocoon probably works as a cement between the cocoons' layers and its physical presence presumably contributes to preventing water flux. Changes in AMPS content in different tissues were accompanied by significant changes in both hyaluronidase and beta-glucuronidase activities, which play an important role in AMPS metabolism. Alcian blue staining of control and digested skin of C. australis and C. platycephala with testicular hyaluronidase indicated the presence of AMPS, concentrated in a thin layer (called ground substance, GS) located between stratum compactum and stratum spongiosum, and acid mucin concentrated in the mucous glands and in a 'tubular' structure which could be observed in the epidermal layer. Hyaluronidase digestion of the cocoon slightly changed the Alcian Blue colour, suggesting the presence of a large amount of acid mucin similar to that found in the skin mucous gland. The results of this study present data for the redistribution of AMPS, which may help in reducing water loss across the cocoon and reabsorption of water in the kidney during aestivation.  相似文献   

7.
Few data exist to test the hypothesis that elasmobranchs utilize ketone bodies rather than fatty acids for aerobic metabolism in muscle, especially in continuously swimming, pelagic sharks, which are expected to be more reliant on lipid fuel stores during periods between feeding bouts and due to their high aerobic metabolic rates. Therefore, to provide support for this hypothesis, biochemical indices of lipid metabolism were measured in the slow-twitch, oxidative (red) myotomal muscle, heart, and liver of several active shark species, including the endothermic shortfin mako, Isurus oxyrinchus. Tissues were assayed spectrophotometrically for indicator enzymes of fatty acid oxidation (3-hydroxy-o-acyl-CoA dehydrogenase), ketone-body catabolism (3-oxoacid-CoA transferase), and ketogenesis (hydroxy-methylglutaryl-CoA synthase). Red muscle and heart had high capacities for ketone utilization, low capacities for fatty acid oxidation, and undetectable levels of ketogenic enzymes. Liver demonstrated undetectable activities of ketone catabolic enzymes but high capacities for fatty acid oxidation and ketogenesis. Serum concentrations of the ketone beta-hydroxybutyrate varied interspecifically (means of 0.128-0.978 micromol mL(-1)) but were higher than levels previously reported for teleosts. These results are consistent with the hypothesis that aerobic metabolism in muscle tissue of active sharks utilizes ketone bodies, and not fatty acids, derived from liver lipid stores.  相似文献   

8.
The Swan River Estuary is the recipient of multiple urban and agricultural contaminants which have the potential to induce liver detoxication enzymes as well as altering the metabolism of aquatic organisms. To test if altered liver metabolism would influence liver detoxication capacities, pink snapper (Pagrus auratus) were i.p. injected with peanut oil (controls), or pentachlorobiphenyl #126 (PCB126), with sodium pentachlorophenate (NaPCP), or PCB126+NaPCP. Relative to controls, ethoxyresorufin-O-deethylase (EROD) activity was induced in the PCB126 and PCB126+NaPCP fish, but not in the NaPCP group. In the liver, cytochrome c oxidase (CCO) activity was enhanced by the treatments while citrate synthase (CS) activity remained unchanged and lactate dehydrogenase (LDH) activity was increased in the NaPCP treatment only. The results suggest that liver CCO activity may be a suitable biomarker of effect following exposure to PCBs or phenolic compounds. In the white muscle, only the PCB126+NaPCP treatment enhanced CCO activity, with all other enzymatic activities remaining unchanged. It appears that the resilience to metabolic perturbations is greater for white muscle than for liver. Low serum sorbitol dehydrogenase (sSDH) activity and histopathology of the liver indicated no significant alteration of cellular structure, albeit the lipid droplet size was increased in the PCB126 and in the PCB126+NaPCP treatments. It is concluded that the hepatic metabolic changes correspond to histopathological observations, but an altered metabolic capacity do not influence the metabolism of xenobiotics by liver enzymes, as measured by EROD activity.  相似文献   

9.
In mammals, carnitine palmitoyltransferase 1 (CPT1) is a rate limiting enzyme of fatty acid oxidation. Two isoforms are present. We characterized a full-length cDNA sequence encoding chicken liver L-CPT1 isoform and a partial cDNA sequence encoding chicken muscle M-CPT1 isoform. CPT1 messengers showed the expected tissue specificity. M-CPT1 messenger and CPT1 activity were higher in oxidative than in glycolytic muscle. Expression of both isoforms was assessed in various tissues of genetically fat or lean chickens. Fasting considerably increased L-CPT1 mRNA expression and beta-hydroxyacyl CoA dehydrogenase (HAD) activity in the liver of fat or lean chickens. Unexpectedly, fasting did not increase M-CPT1 mRNA levels nor HAD activity in muscles of either chicken genotype. It however increased succinyl-CoA:3-ketoacid CoA transferase (SCOT) mRNA expression (an enzyme related to ketone body utilization) in oxidative muscle. SCOT messenger was slightly more abundant in oxidative muscle of lean chickens but not in glycolytic muscle. In conclusion, the regulation of fatty acid oxidation is probably not impaired in fat chicken. The absence of fasting stimulation of M-CPT1 mRNA expression, which is at variance with the situation observed in mammals, suggests that during fasting, chicken muscles preferentially use ketone bodies as fuel, at least in the short term.  相似文献   

10.
To determine whether the aerobic capacity of tissues required for growth specifically reflects growth rates, we monitored the activities of key enzymes of oxidative, glycolytic and amino acid metabolism in muscle, liver and intestine of Atlantic cod (Gadus morhua) growing at different rates. Fish were maintained individually in small tanks at 10°C and fed on rations that allowed growth rates ranging from-0.6 to 1.6% per day. The correlation between growth rate and muscle enzyme activity was pronounced for the glycolytic enzymes (LDH, PFK and PK). The activities of glycolytic enzymes were more than four times higher for fish having higher growth rates compared to those that did not grow. Mitochondrial enzyme (cytochrome c oxidase, citrate synthase and -hydroxyacyl-CoA dehydrogenase) activities remained unchanged in fish with positive growth. The liver seems to respond to requirements of growth by an increase in size. In the liver, the activities of the enzymes of amino acid metabolism expressed as units · g DNA-1 specifically increases with growth rate. In contrast to the two other tissues, the specific activities of mitochondrial enzymes in the intestine increased with growth rate while the relative mass of the intestine remained constant. Intestinal cytochrome c oxidase activity increased from a minimum of about 2 to more than 8 units · g intestine-1. Cytochrome c oxidase activity increased in parallel with the food conversion efficiency. This suggests that the aerobic capacity of the intestine may initially limit the rates of digestion and growth in this species.Abbreviations AA amino acid(s) - BM body mass - CCO cytochrome c oxydase - CS citrate synthase - DTNB 5,5 dithiobis-2-nitrobenzoic acid - GDH glutamate dehydrogenase - GOT glutamate oxalacetate transaminase - GPT glutamate pyruvate transaminase - GR growth rate(s) - HOAD -hydroxyacyl-CoA dehydrogenase - HSI hepatosomatic index - LDH lactate dehydrogenase - MR metabolic rate(s) - PCA perchloric acid - PFK phosphofructokinase - PK pyruvate kinase - PMSF phenylmethylsulphonyl fluoride; TRIS  相似文献   

11.
In rat kidney several mitochondrial and soluble enzyme activities are stimulated by thyroid hormones and the mitochondrial membrane fluidity is also increased. However, the ketone metabolism enzyme activities of D-3-hydroxybutyrate dehydrogenase and of 3-oxoacid CoA-transferase are not significantly affected by the hyperthyroid state and the ketone body concentration is not greatly changed. Therefore, in hyperthyroid rats the response of the kidney, as far as the ketone bodies and their metabolizing enzymes are concerned, is at variance with that of the liver and the heart. In the brain of young rats, age 8-9 weeks, the activities of the enzymes of ketone body metabolism and those responsible for other metabolic pathways are not influenced by the hyperthyroid state. In these animals, however, the activities of two enzymes, NAD-isocitrate dehydrogenase and pyruvate kinase, are still stimulated by 28 and 41%, respectively. This can be probably related to the higher energy requirement for definitive brain maturation in young hyperthyroid rats.  相似文献   

12.
The effects of hypoxia exposure and subsequent normoxic recovery on the levels of lipid peroxides (LOOH), thiobarbituric acid reactive substances (TBARS), carbonylproteins, total glutathione levels, and the activities of six antioxidant enzymes were measured in brain, liver, kidney and skeletal muscle of the common carp Cyprinus carpio. Hypoxia exposure (25% of normal oxygen level) for 5h generally decreased the levels of oxidative damage products, but in liver TBARS content were elevated. Hypoxia stimulated increases in the activities of catalase (by 1.7-fold) and glutathione peroxidase (GPx) (by 1.3-fold) in brain supporting the idea that anticipatory preparation takes place in order to deal with the oxidative stress that will occur during reoxygenation. In liver, only GPx activity was reduced under hypoxia and reoxygenation while other enzymes were unaffected. Kidney showed decreased activity of GPx under aerobic recovery but superoxide dismutase (SOD) and catalase responded with sharp increases in activities. Skeletal muscle showed minor changes with a reduction in GPx activity under hypoxia exposure and an increase in SOD activity under recovery. Responses by antioxidant defenses in carp organs appear to include preparatory increases during hypoxia by some antioxidant enzymes in brain but a more direct response to oxidative insult during recovery appears to trigger enzyme responses in kidney and skeletal muscle.  相似文献   

13.
The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the liver of P. annectens after 6 months (the maintenance phase) of aestivation as compared with the freshwater control, or after 1 day of arousal from 6 months aestivation as compared with 6 months of aestivation using suppression subtractive hybridization. During the maintenance phase of aestivation, the mRNA expression of argininosuccinate synthetase 1 and carbamoyl phosphate synthetase III were up-regulated, indicating an increase in the ornithine-urea cycle capacity to detoxify ammonia to urea. There was also an increase in the expression of betaine homocysteine-S-transferase 1 which could reduce and prevent the accumulation of hepatic homocysteine. On the other hand, the down-regulation of superoxide dismutase 1 expression could signify a decrease in ROS production during the maintenance phase of aestivation. In addition, the maintenance phase was marked by decreases in expressions of genes related to blood coagulation, complement fixation and iron and copper metabolism, which could be strategies used to prevent thrombosis and to conserve energy. Unlike the maintenance phase of aestivation, there were increases in expressions of genes related to nitrogen, carbohydrate and lipid metabolism and fatty acid transport after 1 day of arousal from 6 months aestivation. There were also up-regulation in expressions of genes that were involved in the electron transport system and ATP synthesis, indicating a greater demand for metabolic energy during arousal. Overall, our results signify the importance of sustaining a low rate of waste production and conservation of energy store during the maintenance phase, and the dependence on internal energy store for repair and structural modification during the arousal phase, of aestivation in the liver of P. annectens.  相似文献   

14.
Abstract: Key enzymes of ketone body metabolism (3-hydroxybutyrate de-hydrogenase, 3-oxo-acid: CoA transferase, acetoacetyl-CoA thiolase) and glucose metabolism (hexokinase, lactate dehydrogenase, pyruvate dehydrogenase, citrate synthase) have been measured in the brains of foetal, neonatal and adult guinea pigs and compared to those in the brains of neonatal and adult rats. The activities of the guinea pig brain ketone-body-metabolising enzymes remain relatively low in activity throughout the foetal and neonatal periods, with only slight increases occurring at birth. This contrasts with the rat brain, where three- to fourfold increases in activity occur during the suckling period (0–21 days post partum), followed by a corresponding decrease in the adult. The activities of the hexokinase (mitochondrial and cytosolic), pyruvate dehydrogenase, lactate dehydrogenase and citrate synthase of guinea pig brain show marked increases in the last 10–15 days before birth, so that at birth the guinea pig possesses activities of these enzymes similar to the adult state. This contrasts with the rat brain where these enzymes develop during the late suckling period (10–15 days after birth). The development of the enzymes of aerobic glycolytic metabolism correlate with the onset of neurological competence in the two species, the guinea pig being a "precocial" species born neurologically competent and the rat being a "non-precocial" species born neurologically immature. The results are discussed with respect to the enzymatic activities required for the energy metabolism of a fully developed, neurologically competent mammalian brain and its relative sensitivity to hypoxia.  相似文献   

15.
Abstract In this study, overwintering larvae of pine needle gall midge, Thmodiplosis jaHnensis, were sampled at various dates in the winter of 1997 and profiles of some enzymes of fatty acid metabolism were studied. During overwintering, a decrease in total lipids in T. japonensis larvae suggested the use of fat reserves to maintain basal metabolism. Activities of two enzymes associated with fatty acid synthesis, i. e. malic enzyme and ATP‐dependent citrate lyase, decreased from December to mid‐January, then increased from the end of February, indicating a reduced potential for fatty acid synthesis during the winter. Enzymes for fatty acid oxidation, as indicated by the activities of hydroxyacyl‐CoA dehydrogenase, carnitine‐palmitoyl transferase and acetoacetyl‐CoA thiolase, showed different profiles. The potential for ketone body metabolism, as measured by p‐hydroxybutyrate dehydrogenase activity, decreased in the course of winter, indicating that ketone body as a metabolic fuel during overwintering is not important.  相似文献   

16.
The metabolic organization of a holocephalan, the spotted ratfish (Hydrolagus colliei), was assessed using measurements of key enzymes of several metabolic pathways in four tissues and plasma concentrations of free amino acids (FAA) and non-esterified fatty acids (NEFA) to ascertain if the Holocephali differ metabolically from the Elasmobranchii since these groups diverged ca. 400 Mya. Activities of carnitine palmitoyl transferase indicate that fatty acid oxidation occurs in liver and kidney but not in heart or white muscle. This result mirrors the well-established absence of lipid oxidation in elasmobranch muscle, and more recent studies showing that elasmobranch kidney possesses a capacity for lipid oxidation. High activities in oxidative tissues of enzymes of ketone body metabolism, including D-beta-hydroxybutyrate dehydrogenase, indicate that, like elasmobranchs, ketone bodies are of central importance in spotted ratfish. Like many carnivorous fishes, enzyme activities demonstrate that amino acids are metabolically important, although the concentration of plasma FAA was relatively low. NEFA concentrations are lower than in teleosts, but higher than in most elasmobranchs and similar to that in some "primitive" ray-finned fishes. NEFA composition is comparable to other marine temperate fishes, including high levels of n-6 and especially n-3 polyunsaturated fatty acids. The metabolic organization of the spotted ratfish is similar to that of elasmobranchs: a reduced capacity for lipid oxidation in muscle, lower plasma NEFA levels, and an emphasis on ketone bodies as oxidative fuel. This metabolic strategy was likely present in the common chondrichthyan ancestor, and may be similar to the ancestral metabolic state of fishes.  相似文献   

17.
In the livers of fasted rats, the activity of mitochondrial palmitoyl-CoA hydrolase was increased whereas the microsomal palmitoyl-CoA hydrolase activity decreased. Refeeding with a high-carbohydrate diet (glucose), the corresponding enzyme activities were decreased while refeeding with a high-fat diet (sheep tallow) increased the enzyme activities over the control values. The increased content of long-chain acyl-CoA and free CoASH under fasting and fat-refeeding was mainly attributed to the mitochondrial fraction with the remainder in the light mitochondrial fraction which contains peroxisomes. The results suggest a correlation of the compartmentation of the palmitoyl-CoA hydrolase and the content and compartmentation of the CoA derivatives in the liver under different nutritional states. The peroxisomal palmitoyl-CoA oxidase activity was increased by fasting. Fat-refeeding increased the activity even more; 1.8-fold as compared to the fasting animals. On the other hand, the activities of other peroxisomal enzymes which are not directly involved in the fatty acid metabolism such as urate oxidase were decreased to approximately the same extent by fasting. Re-feeding with glucose and fat further decreased the corresponding enzyme activity, particularly seen in the glucose-refed group.  相似文献   

18.
We studied the long-term effects of streptozotocin-induced diabetes on tissue-specific cytochrome P450 (CYP) and glutathione-dependent (GSH-dependent) xenobiotic metabolism in rats. In addition, we also studied the effect of antidiabetic Momordica charantia (karela) fruit-extract feeding on the modulation of xenobiotic metabolism and oxidative stress in rats with diabetes. Our results have indicated an increase (35-50%) in CYP4A-dependent lauric acid hydroxylation in liver, kidney, and brain of diabetic rats. About a two-fold increase in CYP2E-dependent hepatic aniline hydroxylation and a 90-100% increase in CYP1A-dependent ethoxycoumarin-O-deethylase activities in kidney and brain were also observed. A significant increase (80%) in aminopyrene N-demethylase activity was observed only in rat kidney, and a decrease was observed in the liver and brain of diabetic rats. A significant increase (77%) in NADPH-dependent lipid peroxidation (LPO) in kidney of diabetic rats was also observed. On the other hand, a decrease in hepatic LPO was seen during chronic diabetes. During diabetes an increased expression of CYP1A1, CYP2E1, and CYP4A1 isoenzymes was also seen by Western blot analysis. Karela-juice feeding modulates the enzyme expression and catalytic activities in a tissue- and isoenzyme-specific manner. A marked decrease (65%) in hepatic GSH content and glutathione S-transferase (GST) activity and an increase (about two-fold) in brain GSH and GST activity was observed in diabetic rats. On the other hand, renal GST was markedly reduced, and GSH content was moderately higher than that of control rats. Western blot analyses using specific antibodies have confirmed the tissue-specific alterations in the expression of GST isoenzymes. Karela-juice feeding, in general, reversed the effect of chronic diabetes on the modulation of both P450-dependent monooxygenase activities and GSH-dependent oxidative stress related LPO and GST activities. These results have suggested that the modulation of xenobiotic metabolism and oxidative stress in various tissues may be related to altered metabolism of endogenous substrates and hormonal status during diabetes. The findings may have significant implications in elucidating the therapeutic use of antidiabetic drugs and management of Type 1 diabetes in chronic diabetic patients.  相似文献   

19.
The ontogenesis of catabolic abilities and energy metabolism during endogenous nutritional periods of tongue sole was investigated. In this work, trypsin-like proteases (TRY) and triglyceride lipase (LIP) activities were measured to assess the capacities to catabolize proteins and lipids, respectively. Meanwhile, specific enzymes including pyruvate kinase (PK), glutamic oxalo acetic transaminase (GOT) and glutamate dehydrogenase (GDH), and hydroxyacyl CoA dehydrogenase (HOAD) as well as their ratios were assayed to evaluate the abilities to use energy substrates of carbohydrates, amino acids and fatty acids, respectively, for energy production. In addition, activities of citrate synthase (CS) and lactate dehydrogenase (LDH) and LDH/CS ratio were calculated to analyse the evolution of aerobic and anaerobic pathways. The study found that hatching occurred at 38.8 h after fertilization (HAF), mouth-opening day of eleuteroembryo appeared at 3 days after hatching (DAH), and the most rapid embryonic growth was observed in blastula stage before hatching. Enzymatic assay revealed that except for PK which appeared in cleavage stage onwards, all the other enzymes functioned after fertilization, preparing well for the coming embryogenesis of tongue sole. By comparing the average specific activity of enzyme in each period, it can be found that the highest value occurred at 3 DAH (for TRY, LIP, PK and LDH), 2 DAH (for GDH), fertilized egg (for GOT) and segmentation stage (for HOAD and CS), and the lowest value occurred at fertilized egg (for HOAD, CS and GDH), cleavage stage (for TRY, PK and LDH), gastrula stage (for GOT) and hatching day (for LIP). Based on the changeable patterns of metabolic enzymatic activities and ratios, it is concluded that metabolic capacities on three energy substrates displayed stage-specific traits, and the dominant energy substrate was fatty acids before segmentation stage, amino acids until hatching day and carbohydrate during eleuteroembryo period. As for energy production mode, aerobic pathway appeared to increase greater in fertilized egg and gastrula stage, whereas anaerobic pathway played a predominant role during cleavage stage, blastula stage, segmentation stage and eleuteroembryo stage. These results are valuable to elucidate the nutritional requirements of embryonic stages in tongue sole and to further understand their energy metabolic mechanisms.  相似文献   

20.
The development of the activities of oxidative (COX, CS), glycolytic (PFK, PK, LDH) and muscle enzymes (CK, MK, Pase) was studied in representatives of the families Coregonidae, Salmonidae and Cyprinidae, from hatching to an age of approximately 100 days. In addition, the activities of two enzymes of amino acid metabolism (GOT, GPT) were followed in rainbow trout and in roach.
Water content of fresh body weight and protein content of dry body weight decrease during the early larval period. Specific activities of the two oxidative enzymes decline, whereas those of glycolytic and muscle enzymes increase in all species.
A family-specific event is the enormous increase in glycolytic and muscle enzymes from very low values in the early larva to very high levels in adult Coregonus sp. In rainbow trout, CS activity begins with a low-level period lasting throughout the yolk-sac period, whereas in the other species CS activity is high immediately after hatching.
Acclimation to either 15 or 20° C has no effect on the mass-specific activities of PFK, M K, CK and Pase in roach and chub, but the former three enzymes appear to be strongly dependent on rearing conditions during the early larval period, whereas Pase is not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号