首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wang H  Zhang Y  Heuckeroth RO 《FEBS letters》2007,581(16):3098-3104
Plasminogen activator inhibitor-1 (PAI-1) increases injury in several liver, lung and kidney disease models. The objective of this investigation was to assess the effect of PAI-1 deficiency on cholestatic liver fibrosis and determine PAI-1 influenced fibrogenic mechanisms. We found that PAI-1(-/-) mice had less fibrosis than wild type (WT) mice after bile duct ligation. This change correlated with increased tissue-type plasminogen activator (tPA) activity, and increased matrix metalloproteinase-9 (MMP-9), but not MMP-2 activity. Furthermore, there was increased activation of the tPA substrate hepatocyte growth factor (HGF), a known anti-fibrogenic protein. In contrast, there was no difference in hepatic urokinase plasminogen activator (uPA) or plasmin activities between PAI-1(-/-) and WT mice. There was also no difference in the level of transforming growth factor beta 1 (TGF-beta1), stellate cell activation or collagen production between WT and PAI-1(-/-) animals. In conclusion, PAI-1 deficiency reduces hepatic fibrosis after bile duct obstruction mainly through the activation of tPA and HGF.  相似文献   

2.
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive interstitial scarification. A hallmark morphological lesion is the accumulation of myofibroblasts or fibrotic lung fibroblasts (FL-fibroblasts) in areas called fibroblastic foci. We previously demonstrated that the expression of both urokinase-type plasminogen activator (uPA) and the uPA receptor are elevated in FL-fibroblasts from the lungs of patients with IPF. FL-fibroblasts isolated from human IPF lungs and from mice with bleomycin-induced pulmonary fibrosis showed an increased rate of proliferation compared with normal lung fibroblasts (NL-fibroblasts) derived from histologically “normal” lung. Basal expression of plasminogen activator inhibitor-1 (PAI-1) in human and murine FL-fibroblasts was reduced, whereas collagen-I and α-smooth muscle actin were markedly elevated. Conversely, alveolar type II epithelial cells surrounding the fibrotic foci in situ, as well as those isolated from IPF lungs, showed increased activation of caspase-3 and PAI-1 with a parallel reduction in uPA expression. Transduction of an adenovirus PAI-1 cDNA construct (Ad-PAI-1) suppressed expression of uPA and collagen-I and attenuated proliferation in FL-fibroblasts. On the contrary, inhibition of basal PAI-1 in NL-fibroblasts increased collagen-I and α-smooth muscle actin. Fibroblasts isolated from PAI-1-deficient mice without lung injury also showed increased collagen-I and uPA. These changes were associated with increased Akt/phosphatase and tensin homolog proliferation/survival signals in FL-fibroblasts, which were reversed by transduction with Ad-PAI-1. This study defines a new role of PAI-1 in the control of fibroblast activation and expansion and its role in the pathogenesis of fibrosing lung disease and, in particular, IPF.  相似文献   

3.
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.  相似文献   

4.
5.
Alveolar type II (ATII) cell apoptosis and depressed fibrinolysis that promotes alveolar fibrin deposition are associated with acute lung injury (ALI) and the development of pulmonary fibrosis (PF). We therefore sought to determine whether p53-mediated inhibition of urokinase-type plasminogen activator (uPA) and induction of plasminogen activator inhibitor-1 (PAI-1) contribute to ATII cell apoptosis that precedes the development of PF. We also sought to determine whether caveolin-1 scaffolding domain peptide (CSP) reverses these changes to protect against ALI and PF. Tissues as well as isolated ATII cells from the lungs of wild-type (WT) mice with BLM injury show increased apoptosis, p53, and PAI-1, and reciprocal suppression of uPA and uPA receptor (uPAR) protein expression. Treatment of WT mice with CSP reverses these effects and protects ATII cells against bleomycin (BLM)-induced apoptosis whereas CSP fails to attenuate ATII cell apoptosis or decrease p53 or PAI-1 in uPA-deficient mice. These mice demonstrate more severe PF. Thus p53 is increased and inhibits expression of uPA and uPAR while increasing PAI-1, changes that promote ATII cell apoptosis in mice with BLM-induced ALI. We show that CSP, an intervention targeting this pathway, protects the lung epithelium from apoptosis and prevents PF in BLM-induced lung injury via uPA-mediated inhibition of p53 and PAI-1.  相似文献   

6.
7.
Skeletal muscle possesses a remarkable capacity for regeneration. Although the regulation of this process at the molecular level remains largely undefined, the plasminogen system appears to play a critical role. Specifically, mice deficient in either urokinase-type plasminogen activator (uPA–/– mice) or plasminogen demonstrate markedly impaired muscle regeneration after injury. In the present study, we tested the hypothesis that loss of the primary inhibitor of uPA, plasminogen activator inhibitor-1 (PAI-1), would improve muscle regeneration. Repair of the extensor digitorum longus muscle was assessed after cardiotoxin injury in wild-type, uPA–/–, and PAI-1-deficient (PAI-1–/–) mice. As expected, there was no uPA activity in the injured muscles of uPA–/– mice, and muscles from these transgenic animals demonstrated impaired regeneration. On the other hand, uPA activity was increased in injured muscle from PAI-1–/– mice to a greater extent than in wild-type controls. Furthermore, PAI-1–/– mice demonstrated increased expression of MyoD and developmental myosin after injury as well as accelerated recovery of muscle morphology, protein levels, and muscle force compared with wild-type animals. The injured muscles of PAI-1-null mice also demonstrated increased macrophage accumulation, contrasting with impaired macrophage accumulation in uPA-deficient mice. The extent of macrophage accumulation correlated with both the clearance of protein after injury and the efficiency of regeneration. Taken together, these results indicate that PAI-1 deficiency promotes muscle regeneration, and this protease inhibitor represents a therapeutic target for enhancing muscle regeneration. muscle injury; muscle repair; urokinase-type plasminogen activator; muscle inflammation; macrophage  相似文献   

8.
The urokinase-type plasminogen activator (uPA) plays a central role in liver repair. Nevertheless, the hepatic overexpression of uPA results in panlobular injury and neonatal mortality. Here, we define the molecular mechanisms of liver injury and explore whether uPA can regulate liver repair independently of plasminogen. To address the hypothesis that the liver injury in transgenic mice results from the intracellular activation of plasminogen by transgene-derived uPA (uPAT), we generated mice that overexpress uPAT and lack functional plasminogen (uPAT-Plg(-)). In these mice, loss of plasminogen abolished the hepatocyte-specific injury and prevented the formation of regenerative nodules displayed by uPAT littermates. Despite the increased expression of hepatic uPA, livers of uPAT-Plg(-) mice were unable to clear necrotic cells and restore normal lobular organization after an acute injury. Notably, high levels of circulating uPA in uPAT-Plg(-) mice did not prevent the long-term extrahepatic abnormalities previously associated with plasminogen deficiency. These data demonstrate that plasminogen directs the hepatocyte injury induced by uPAT and mediates the reparative properties of uPA in the liver.  相似文献   

9.
10.
Fujisaki K  Tanabe N  Suzuki N  Mitsui N  Oka H  Ito K  Maeno M 《Life sciences》2006,78(17):1975-1982
Interleukin-1 (IL-1) plays key roles in altering bone matrix turnover. This turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) , and plasminogen activator inhibitor type-1 (PAI-1). In this study, we examined the effect of IL-1alpha on the expression of the MMPs, TIMPs, tPA, uPA, and PAI-1 genes in osteoblasts derived from the rat osteosarcoma cell line ROS 17/2.8. The cells were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with 0 or 100 U/ml of IL-1alpha for up to 14 days. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 expression were estimated by determining the mRNA levels using real-time RT-PCR and by determining protein levels using ELISA. In IL-1alpha cultures, the expression levels of MMP-1, -2, -3, -13, and -14 exceeded that of the control through day 14 of culture, and the expression of MMPs increased markedly from the proliferative to the later stages of culture. The TIMP-1, -2, and -3 expression levels increased from the initial to the proliferative stages of culture. The expression of tPA increased greatly during the proliferative stage of culture, and uPA expression increased throughout the culture period, increasing markedly from the proliferative to the later stages of culture. In contrast, PAI-1 expression decreased in the presence of IL-1alpha through day 14. These results suggest that IL-1alpha stimulate bone matrix turnover by increasing MMPs, tPA, and uPA production and decreasing PAI-1 production by osteoblasts, and incline the turnover to the resolution.  相似文献   

11.
Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors   总被引:17,自引:0,他引:17  
Urokinase-type plasminogen activator (uPA) binds to a specific receptor on various cell types, the bound molecule retaining its enzymatic activity against plasminogen. We have now investigated whether receptor-bound uPA also retains the ability to react with and be inhibited by plasminogen activator inhibitors (PAI-1 and PAI-2). uPA bound to its receptor on human U937 monocyte-like cells was inhibited by PAI-1 (in its active form in the presence of vitronectin fragments) with an association rate constant of 4.5 x 10(6) M-1 s-1, which was 40% lower than that obtained for uPA in solution (7.9 x 10(6) M-1 s-1). The inhibition of uPA by PAI-2 was decreased to a similar extent by receptor binding, falling from 5.3 x 10(5) to 3.3 x 10(5) M-1 s-1. Stimulation of U937 cells with phorbol 12-myristate 13-acetate was accompanied by a further reduction in receptor-bound uPA inhibition by PAI-1 and PAI-2 to 1.7 x 10(6) and 1.1 x 10(5) M-1 s-1, respectively. These constants although lower than those for uPA in solution still represent rather rapid inhibition of the enzyme, and demonstrate that uPA bound to its specific cellular receptor remains available for efficient inhibition by PAI's, which may therefore play a major role in controlling cell-surface plasminogen activation and extracellular proteolytic activity.  相似文献   

12.
The effect of TGFbeta1 on the proliferation and plasminogen activator system (PA) of two prostate carcinoma cell lines, PC3 and DU145, was investigated. PA, particularly urokinase plasminogen activator (uPA), has been implicated in extracellular proteolysis, local invasiveness, metastatic spread and angiogenesis. High levels of uPA and plasminogen activator inhibitor-1 (PAI-1) correlate with poor prognosis in several cancers. TGFbeta1 had no significant effect on the proliferation of either cell line. TGFbeta1 increased the production of uPA in PC3 and DU145 cells. Despite the very low PAI-1 protein levels in both cell lines, TGFbeta1 treatment resulted in a remarkable increase in PAI-1 secretion. PAI-2 protein was also increased by 59% in the PC3 cells. A divergent effect of TGFbeta1 on the uPA enzyme activity was observed (28% decrease in PC3 and 131% increase in DU145 cells). Overall, TGFbeta1 treatment did not affect the invasion of reconstituted basement membrane of PC3 cells. In addition to the uPA:PAI-1 ratio, the presence of PAI-2 may be an important factor in the determination of metastatic sites for prostate cancer cells. In conclusion, the potential contribution of TGFbeta1 to tumor invasion may be considered as positive, based on both loss of growth inhibition and stimulation of components of the invasive system of prostate carcinoma.  相似文献   

13.
Granuloma formation and subsequent fibrosis around Angiostrongylus cantonensis larvae in the lungs were induced experimentally in Sprague-Dawley strain rats. Casein zymogram analysis demonstrated that urokinase-type plasminogen activator (uPA) activity was increased during lung inflammation and fibrosis. Granulomatous fibrosis, type IV collagen degradation and activation of uPA occur simultaneously. Furthermore, the present study demonstrated that collagen avidly binds uPA. Immunohistochemical observations showed localization of uPA within the infiltrating leucocytes. We propose that uPA may participate in A. cantonensis-induced granulomatous fibrosis.  相似文献   

14.
The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family and is closely related to LRP. It was discovered as a putative tumor suppressor and is frequently inactivated in lung cancer cells. In the present study, we used an LRP1B minireceptor (mLRP1B4), which mimics the function and trafficking of LRP1B, to explore the roles of LRP1B on the plasminogen activation system. We found that mLRP1B4 and urokinase plasminogen activator receptor (uPAR) form immunoprecipitable complexes on the cell surface in the presence of complexes of uPA and its inhibitor, plasminogen activator inhibitor type-1 (PAI-1). However, compared with cells expressing the analogous LRP minireceptor (mLRP4), cells expressing mLRP1B4 display a substantially slower rate of uPA.PAI-1 complex internalization. Expression of mLRP1B4, or an mLRP4 mutant deficient in endocytosis, leads to an accumulation of uPAR at the cell surface and increased cell-associated uPA and PAI-1 when compared with cells expressing mLRP4. In addition, we found that expression of mLRP1B or the mLRP4 endocytosis mutant impairs the regeneration of unoccupied uPAR on the cell surface and that this correlates with a diminished rate of cell migration. Taken together, these results demonstrate that LRP1B can function as a negative regulator of uPAR regeneration and cell migration.  相似文献   

15.
16.
Enzymatic properties of phosphorylated urokinase plasminogen activator (P-uPA) (1) extracted from human carcinomatous cell line Detroit 562 cells were compared with those of non-phosphorylated uPA of urinary origin (nP-uPA). Using plasminogen as a substrate, the Km and Kcat of P-uPA were higher than that of nP-uPA while the Kcat/Km was lower. By zymography, a greater degree of plasminogen activation was observed. Concanavalin A reacted to both the enzymes. P-uPA had a low affinity for the inhibitors of plasminogen activator PAI-1 and PAI-2, and was inhibited only by the excess amounts of inhibitors. For PAI-1, and the KIs of P-uPA was greater and for PAI-2, KI was higher for P-uPA. These alterations by phosphorylation enable uPA to be more efficient in a focal proteolysis through plasminogen activation.  相似文献   

17.
Urokinase plasminogen activator (uPA) is a serine protease that catalyzes the conversion of plasminogen to plasmin. The plasminogen/plasmin system includes the uPA, its receptor, and its inhibitor (plasminogen activator inhibitor-1). Interactions between these molecules regulate cellular proteolysis as well as adhesion, cellular proliferation, and migration, processes germane to the pathogenesis of lung injury and neoplasia. In previous studies, we found that uPA regulates cell surface fibrinolysis by regulating its own expression as well as that of the uPA receptor and plasminogen activator inhibitor-1. In this study, we found that uPA alters expression of the tumor suppressor protein p53 in Beas2B airway epithelial cells in both a time- and concentration-dependent manner. These effects do not require uPA catalytic activity because the amino-terminal fragment of uPA lacking catalytic activity was as potent as two chain active uPA. Single chain uPA also enhanced p53 expression to the same extent as intact two chain active uPA and the amino-terminal fragment. Pretreatment of cells with anti-beta1 integrin antibody blocked uPA-induced p53 expression. uPA-induced p53 expression occurs without increased p53 mRNA expression. However, uPA induced oncoprotein MDM2 in a concentration-dependent manner. uPA-induced p53 expression does not require activation of tyrosine kinases. Inactivation of protein-tyrosine phosphatase SHP-2 inhibits both basal and uPA-induced p53 expression. Plasmin did not alter uPA-mediated p53 expression. The induction of p53 expression by exposure of lung epithelial cells to uPA is a newly recognized pathway by which urokinase may influence the proliferation of lung epithelial cells. This pathway could regulate pathophysiologic alterations of p53 expression in the setting of lung inflammation or neoplasia.  相似文献   

18.
Rapid fibrovascularization is a prerequisite for successful biomaterial engraftment. In addition to their well-known roles in fibrinolysis, urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA) or their inhibitor plasminogen activator inhibitor-1 (PAI-1) have recently been implicated as individual mediators in non-fibrinolytic processes, including cell adhesion, migration, and proliferation. Since these events are critical for fibrovascularization of biomaterial, we hypothesized that the components of the plasminogen activation system contribute to biomaterial engraftment. Employing in vivo and ex vivo microscopy techniques, vessel and collagen network formation within porous polyethylene (PPE) implants engrafted into dorsal skinfold chambers were found to be significantly impaired in uPA-, tPA-, or PAI-1-deficient mice. Consequently, the force required for mechanical disintegration of the implants out of the host tissue was significantly lower in the mutant mice than in wild-type controls. Conversely, surface coating with recombinant uPA, tPA, non-catalytic uPA, or PAI-1, but not with non-catalytic tPA, accelerated implant vascularization in wild-type mice. Thus, uPA, tPA, and PAI-1 contribute to the fibrovascularization of PPE implants through common and distinct effects. As clinical perspective, surface coating with recombinant uPA, tPA, or PAI-1 might provide a novel strategy for accelerating the vascularization of this biomaterial.  相似文献   

19.
mRNA levels for urokinase type plasminogen activator (uPA), tissue type plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator inhibitor-2 (PAI-2) were examined in human diploid (neonatal foreskin) fibroblasts grown in 200-ml microcarrier suspension culture. Four different substrates were used. These included gelatin-coated polystyrene plastic, DEAE-dextran, glass-coated polystyrene plastic and uncoated polystyrene plastic. Our previous studies have shown that culture fluids from diploid fibroblasts grown on DEAE-dextran contained higher levels of plasminogen-dependent fibrinolytic activity than culture fluids from the same cells grown on other substrates. The increased plasminogen activator activity was due largely to elevated amounts of tPA (In Vitro Cell. Develop. Biol. 22: 575–582, 1986). The present study shows that there is a corresponding elevation of tPA mRNA in diploid fibroblasts cultured on DEAE-dextran relative to the other substrates. There does not appear to be any difference in uPA mRNA or in mRNA for PAI-1 or PAI-2 produced by the same cells on the four substrates. These data suggest that the influence of the substrate on plasminogen activator production is mediated at the genetic level.  相似文献   

20.
Keloids are characterized as an "overexuberant" healing response in which disequilibrium between production and catabolism of extracellular matrix (ECM) occurs. Previous studies from our laboratory and others demonstrate an intrinsically higher level of plasminogen activator inhibitor-1 (PAI-1) expression in keloid tissues and cultured fibroblasts compared with normal bordering skin. These findings support the concept that an altered balance of activator and inhibitor activities in the plasminogen system, in particular, an overexpression of PAI-1, may partly contribute to keloid formation and tissue fibrosis. Vascular endothelial growth factor (VEGF) has been implicated as a critical factor in regulating angiogenesis and inflammation under both physiological and pathological conditions. This study was designed to assess whether VEGF plays a role in keloid fibrosis. We report that VEGF was expressed at higher levels in keloid tissues and their derived fibroblasts compared with their associated normal skin. We have further demonstrated that VEGF stimulated the expression of PAI-1, but not urokinase plasminogen activator (uPA), in keloid fibroblasts at both mRNA and protein levels, in a dose- and time-dependent manner. However, treatment of normal skin fibroblasts with VEGF exerted little effects on PAI-1 gene expression. Additionally, we have characterized for the first time that the extracellular signal-regulated kinase (ERK)1/2 signaling pathway is mainly involved in VEGF-induced PAI-1 expression and have demonstrated its potential as a target molecule for modulation of scar fibrosis. These findings suggest that VEGF may play an important role in keloid formation by altering ECM homeostasis toward a state of impaired degradation and excessive accumulation. urokinase plasminogen activator; extracellular matrix; fibrosis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号