首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang Y  Li X  Duan H  Fulton TR  Eu JP  Meissner G 《Cell calcium》2009,45(1):29-37
Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10mM KCl) by 20-25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 microM 4-chloro-m-cresol, 10mM caffeine, 400 microM UTP, or 1 microM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins' mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes.  相似文献   

3.
The role of mitochondrial Ca2+ transport in regulating intracellular Ca2+ signaling and mitochondrial enzymes involved in energy metabolism is widely recognized in many tissues. However, the ability of skeletal muscle mitochondria to sequester Ca2+ released from the sarcoplasmic reticulum (SR) during the muscle contraction-relaxation cycle is still disputed. To assess the functional cross-talk of Ca2+ between SR and mitochondria, we examined the mutual relationship connecting cytosolic and mitochondrial Ca2+ dynamics in permeabilized skeletal muscle fibers. Cytosolic and mitochondrial Ca2+ transients were recorded with digital photometry and confocal microscopy using fura-2 and mag-rhod-2, respectively. In the presence of 0.5 mM slow Ca2+ buffer (EGTA (ethylene glycolbis(2-aminoethylether)-N,N,N',N'-tetraacetic acid)), application of caffeine induced a synchronized increase in both cytosolic and mitochondrial [Ca2+]. 5 mM fast Ca2+ buffer (BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)) nearly eliminated caffeine-induced increases in [Ca2+]c but only partially decreased the amplitude of mitochondrial Ca2+ transients. Confocal imaging revealed that in EGTA, almost all mitochondria picked up Ca2+ released from the SR by caffeine, whereas only about 70% of mitochondria did so in BAPTA. Taken together, these results indicated that a subpopulation of mitochondria is in close functional and presumably structural proximity to the SR, giving rise to subcellular microdomains in which Ca2+ has preferential access to the juxtaposed organelles.  相似文献   

4.
In order to investigate the mechanism of skeletal muscle relaxation induced by dimethyl sulfoxide, 2-butoxyethanol and dimethyl sulfoxide were examined for their effects on 1) Ca2+ uptake into and efflux from sarcoplasmic reticulum vesicles prepared from rabbit fast skeletal muscle and crayfish tail muscle by the murexide method, 2) ATPase activities of rabbit reticulum vesicles, 3) the isolated phrenic nerve-diaphragm preparation of the rat and 4) crayfish opener muscle preparation. Ca2+ efflux rate from rabbit reticulum vesicles was markedly decreased with increasing concentrations (5-20% v/v) of dimethyl sulfoxide without affecting the maximum Ca2+ uptake by the reticulum. 2-Butoxyethanol showed quite contrary effects. Dimethyl sulfoxide strongly inhibited the activity of basal ATPase rather than of Ca2+-dependent ATPase. 2-Butoxyethanol did not significantly inhibit the activity of basal ATPase, but markedly increased Ca2+-dependent ATPase activity. Antagonisms between dimethyl sulfoxide and caffeine were demonstrated either in contractions of crayfish opener muscles or in the Ca2+ release from crayfish sarcoplasmic reticulum vesicles. These results indicate a possibility that dimethyl sulfoxide reversibly induces skeletal muscle relaxation mainly in the sarcoplasmic reticulum by means of decreasing the rate and the amount of Ca2+ release from the reticulum.  相似文献   

5.
In order to test the physiological significance of inositol 1,4,5-trisphosphate (InsP3) in pharmacomechanical coupling, we have utilized two near-physiological systems, in which relatively high molecular weight solutes can be applied intracellularly and receptor coupling is retained: beta-escin permeabilization and reversible permeabilization. We showed that in smooth muscle permeabilized with beta-escin, one of the saponin esters, alpha 1-adrenergic (phenylephrine) and muscarinic (carbachol) agonists, as well as caffeine and InsP3, cause contractions mediated by Ca2+ release. These contractions were calmodulin-dependent and blocked by depletion of Ca2+ stored in the sarcoplasmic reticulum. Intracellular heparin (Mr = about 5000), a blocker of InsP3 binding to its receptor and a specific inhibitor of InsP3-induced Ca2+ release in smooth muscles, inhibited the responses to the agonists and to InsP3, but not those to caffeine, nor did it block the enhanced contractile response to cytoplasmic Ca2+ induced by agonists and by GTP gamma S. Neomycin blocked Ca2+ release induced by carbachol, but not by caffeine. In reversibly permeabilized ileum smooth muscle cells, loaded with Fura-2 acid and heparin, the intracellular heparin inhibited Ca2+ release and contractions induced by carbachol in Ca2+-free, high K+ solution. Heparin did not inhibit the high K+ contractions (with 1.2 mM Ca2+) and had no significant inhibitory effects on carbachol-induced responses in the presence of extracellular Ca2+. These results, obtained under near-physiological conditions, support the conclusion that InsP3 is the major physiological messenger of the Ca2+ release component of pharmacomechanical coupling, but not of the components mediated by Ca2+ influx or by potentiation of the contractile response to Ca2+.  相似文献   

6.
Carnosine (beta-alanyl-L-histidine), which is present in millimolar concentrations in skeletal muscles, induces Ca2+ release from the heavy fraction of rabbit skeletal muscle sarcoplasmic reticulum by activation ruthenium red-sensitive Ca-release channels. The effect of carnosine is dose-dependent, which indicates the presence of saturable carnosine-binding sites in the Ca-release channel molecule. The half-maximal Ca2+ release is observed in the presence of 8.7 mM carnosine. At the same time, carnosine addition to the medium increases the affinity of sarcoplasmic reticulum Ca-channels for the Ca-release activators, caffeine and adenine nucleotides. It is concluded that carnosine is an endogenous regulator of skeletal muscle sarcoplasmic reticulum Ca-channels which modulates the affinity of these channels for different ligands.  相似文献   

7.
L Xu  G Meissner 《Biophysical journal》1998,75(5):2302-2312
The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer method. In the presence of caffeine and nanomolar cytosolic Ca2+ concentrations, lumenal-to-cytosolic Ca2+ fluxes >/=0.25 pA activated the channel. At the maximally activating cytosolic Ca2+ concentration of 4 microM, lumenal Ca2+ fluxes of 8 pA and greater caused a decline in channel activity. Lumenal Ca2+ fluxes primarily increased channel activity by increasing the duration of mean open times. Addition of the fast Ca2+-complexing buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cytosolic side of the bilayer increased lumenal Ca2+-activated channel activities, suggesting that it lowered Ca2+ concentrations at cytosolic Ca2+-inactivating sites. Regulation of channel activities by lumenal Ca2+ could be also observed in the absence of caffeine and in the presence of 5 mM MgATP. These results suggest that lumenal Ca2+ can regulate cardiac Ca2+ release channel activity by passing through the open channel and binding to the channel's cytosolic Ca2+ activation and inactivation sites.  相似文献   

8.
Using an intracellularly trapped dye, quin 2, effects of K+-depolarization on cytosolic free calcium concentrations were recorded microfluorometrically in rat aorta vascular smooth muscle cells in primary culture. When the cells were exposed to high extracellular K+ in Ca+-free media containing 2mM EGTA, there was a transient and dose-dependent elevation of cytosolic Ca2+ concentrations. However, the concentration of the cytosolic Ca2+ was not elevated when the intracellularly stored Ca2+ was depleted by the repetitive treatment with caffeine prior to the application of high K+. Thus depolarization of plasma membrane, per se, directly induces a release of Ca2+ from intracellular storage sites in vascular smooth muscle cells, and the main fraction of this released Ca2+ is derived from the caffeine sensitive storage sites; perhaps from the sarcoplasmic reticulum.  相似文献   

9.
Using a Ca2+-selective electrode and Quin 2 and chlortetracycline fluorescence spectra, a comparative study of caffeine- and Ca2+-induced release of Ca2+ from the terminal cisterns of rabbit fast skeletal muscle sarcoplasmic reticulum was carried out. It was shown that the caffeine-induced release of Ca2+ depends on Ca2+ and Mg2+ concentration in the medium; Mg2+ inhibit, while Ca2+ stimulate this process. The caffeine-induced transport of Ca2+ is blocked by ruthenium red, tetracaine and dimethylsulfoxide. The Ca2+ release induced by Ca2+ was shown to occur in two ways, i. e., via Mg2+-dependent (inhibited by Mg2+ and caffeine blockers) and Mg2+-independent (insensitive to caffeine inhibitors, including Mg2+) routes. It was assumed that caffeine stimulates the Mg2+-dependent, Ca2+-induced release of Ca2+. The sensitivity of Ca2+ transport to caffeine testifies to the fact that about 80% of the total Ca2+ transport activity of fast skeletal muscle homogenates belongs to terminal cisterns. The total amount of sarcoplasmic reticulum membranes in the muscle makes up to 15-20 mg of protein/g of tissue.  相似文献   

10.
The anthraquinones, doxorubicin, mitoxantrone, daunorubicin and rubidazone are shown to be potent stimulators of Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles and to trigger transient contractions in chemically skinned psoas muscle fibers. These effects of anthraquinones are the direct consequence of their specific interaction with the [3H] ryanodine receptor complex, which constitutes the Ca2+ release channel from the triadic junction. In the presence of adenine nucleotides and physiological Mg2+ concentrations (approximately 1.0 mM), channel activation by doxorubicin and daunorubicin exhibits a sharp dependence on submicromolar Ca2+ which is accompanied by a selective, dose-dependent increase in the apparent affinity of the ryanodine binding sites for Ca2+, in a manner similar to that previously reported with caffeine. Unlike caffeine, however, anthraquinones increase [3H]ryanodine receptor occupancy to the level observed in the presence of adenine nucleotides. A strong interaction between the anthraquinone and the caffeine binding sites on the Ca2+ release channel is also observed when monitoring Ca2+ fluxes across the SR. Millimolar caffeine both inhibits anthraquinone-stimulated Ca2+ release, and reduces anthraquinone-stimulated [3H]ryanodine receptor occupancy, without changing the effective binding constant of the anthraquinone for its binding site. The degree of cooperativity for daunorubicin activation of Ca2+ release from SR also increases in the presence of caffeine. These results demonstrate that the mechanism by which anthraquinones stimulate Ca2+ release is caused by a direct interaction with the [3H]ryanodine receptor complex, and by sensitization of the Ca2+ activator site for Ca2+.  相似文献   

11.
Effects of pretreatment with caffeine on Ca2+ release induced by caffeine, thymol, quercetin, or p-chloromercuriphenylsulfonic acid (pCMPS) from the heavy fraction of sarcoplasmic reticulum (SR) were studied and compared with those effects on caffeine contracture and tetanus tension in single fibers of frog skeletal muscle. Caffeine (1-5 mM) did induce transient Ca2+ release from SR vesicles, but subsequent further addition of caffeine (10 mM, final concentration) induced little Ca2+ release. Ca2+ release induced by thymol, quercetin, or pCMPS was also inhibited by pretreatment with caffeine. In single muscle fibers, pretreatment with caffeine (1-5 mM) partially reduced the contracture induced by 10 mM caffeine. However, tetanus tension was almost maximally induced by electrical stimulus in caffeine-treated fibers. These results indicate that SR, which becomes less sensitive to caffeine, thymol, quercetin, or pCMPS by pretreatment with caffeine, can still respond to a physiological signal transmitted from transverse tubules.  相似文献   

12.
13.
Using a Ca2+-selective electrode and Quin 2 and chlortetracycline fluorescence, a Ca2+ release from terminal cysterns of skeletal muscle sarcoplasmic reticulum under effects of heparin, caffeine and Ca2+ has been studied. It was shown that Ca2+ release induced by heparin is insensitive to the blockers of Mg2+-dependent system of Ca2+-induced Ca2+ release, i.e., Mg2+, tetracaine and dimethylsulfoxide. Preliminary release of Ca2+ in the presence of caffeine, which activates Mg2+-dependent Ca2+ release, does not prevent the heparin-induced Ca2+ release. At the same time, after Ca2+ release caused by Ca2+ in a Mg2+-independent system, heparin cannot cause additional efflux of Ca2+. It has been shown that the heparin-induced release of Ca2+ diminishes with a decrease in a decrease in Ca2+ concentration. This effect is less pronounced in the presence of Na+ than with K+. The data obtained suggest that sarcoplasmic reticulum terminal cysterns contain two systems of Ca2+-induced release of Ca2+, i.e., a Mg2+-dependent, caffeine-sensitive and a Mg2+-independent heparin-sensitive ones. The mechanism of activation of both systems by caffeine and heparin consists, in all probability, in their increased affinity for Ca2+.  相似文献   

14.
The effects of modifiers of Ca2+ uptake and release in sarcoplasmic reticulum were studied in human platelet membranes. AgNO3,p-chloromercuribenzoate (pClHgBzO), N-ethylmaleimide (MalNEt), quercetin, vanadate, A23187, and caffeine all had the same effects on Ca2+ uptake in platelet membranes as had been observed for sarcoplasmic reticulum. These results strengthen our earlier conclusion that the Ca2+-pump proteins from internal human platelet membranes and muscle sarcoplasmic reticulum are very similar in functional properties. The sulfhydryl reagents Ag+ and pClHgBzO elicited rapid release of Ca2+ from platelet membranes in the presence of ATP, whereas MalNEt induced slow release. Quercetin also caused slow release of Ca2+ from platelet membranes in the presence of ATP. The effects of all three sulfhydryl reagents could be reversed by dithiothreitol, and Ag+-induced release was also reversed by ruthenium red. These effects are similar to those observed in sarcoplasmic reticulum, but in contrast caffeine did not induce Ca2+ release. In the absence of ATP, passively loaded platelet membranes did not release Ca2+ when exposed to sulfhydryl reagents. However, AgCl and pClHgBzO inhibited inositol trisphosphate (InsP3)-induced Ca2+ release from platelet membranes and this effect was reversed by dithiothreitol. Ruthenium red also inhibited InsP3-induced release, but ATP was found not to be required for InsP3-mediated release. LiCl enhanced Ca2+ release from platelet membranes. These results demonstrate that the InsP3-gated Ca2+ release channel is a separate entity from the Ca2+-pump and that essential protein sulfhydryls are involved in the release process.  相似文献   

15.
Several agents are known to influence the contraction of skeletal and cardiac muscle via a modification of the Ca2+ release mechanism of the sarcoplasmic reticulum, e.g. caffeine, ryanodine, ruthenium red and doxorubicin. Of these substances, only the effects of caffeine and ryanodine have been described in smooth muscle. In this paper we describe the action of ruthenium red and doxorubicin on saponin-skinned mesenteric arteries of the rabbit. A high concentration (20 microM) of ruthenium red inhibited the Ca2+ release induced by low concentrations of caffeine, but had little effect on Ca2+ release induced by high concentrations (20 mM) of caffeine. This result indicates that the Ca2+ release channel of the internal Ca2+ store of smooth muscle cells is less sensitive to inhibition by ruthenium red than that of striated muscle. Doxorubicin in the micromolar range elicited a Ca2+ release and a concomitant contraction, essentially similar to its effect on skinned skeletal muscle cells. This work reveals further similarities between the Ca2+ release mechanisms of smooth and striated muscle, but the results also indicate that important differences between both systems may exist.  相似文献   

16.
Enzymatically isolated ventricular cells from rats, dogs, and rabbits were electrically stimulated and their membrane potentials were recorded simultaneously with their contractions. Specific pharmacological interventions were used to assess the relative roles of transsarcolemmal Ca2+ entry and the Ca2+ release by the sarcoplasmic reticulum in activating contractions, in these myocytes. We used ryanodine and caffeine to influence Ca2+ release by the sarcoplasmic reticulum, BAY K 8644 and epinephrine to increase Ca2+ entry through Ca2+ channels, and veratridine, ouabain, and monensin to increase Ca2+ entry through Na+-Ca2+ exchange. Ryanodine (1 microM) completely inhibited the shortenings in rat and dog myocytes, but the contractions in rabbit myocytes were much less sensitive to this alkaloid. Similar inhibitory effects of ryanodine were observed in the presence of various inotropic agents with two exceptions: caffeine's effect on the dog myocytes was relatively insensitive to ryanodine and the long-lasting tonic contractions that veratridine triggered in the myocytes of all three species remained completely unaffected by ryanodine. The data indicate that contractile activation in rat and dog ventricular cells is strongly dependent on Ca2+ release from the sarcoplasmic reticulum, while contractility in rabbit myocytes seems to be more dependent on Ca2+ entry through the sarcolemma. The ryanodine-resistant tonic contractions triggered in the myocytes of all three species in the presence of veratridine may be activated by an increased Ca2+ entry via Na+-Ca2+ exchange.  相似文献   

17.
Bromo-eudistomin D induced a contraction of the chemically skinned fibers from skeletal muscle at concentrations of 10 microM or more. This contractile response to bromo-eudistomin D was completely blocked by 10 mM procaine. The extravascular Ca2+ concentrations of the heavy fractions of the fragmented sarcoplasmic reticulum (HSR) were measured directly by a Ca2+ electrode to examine the effect of bromo-eudistomin D on the sarcoplasmic reticulum. After the HSR was loaded with Ca2+ by the ATP-dependent Ca2+ pump, the addition of 10 microM bromo-eudistomin D caused Ca2+ release that was followed by spontaneous Ca2+ reuptake. In the presence of 2 microM ruthenium red or 4 mM MgCl2, no Ca2+ release was induced by 20 microM bromo-eudistomin D. The rate of 45Ca2+ efflux from HSR, which had been passively preloaded with 45Ca2+, was accelerated 7 times by 10 microM bromo-eudistomin D. The concentration of bromo-eudistomin D for half-maximum effect on the apparent efflux rate was 1.5 microM, while that of caffeine was 0.6 mM. The bromo-eudistomin D-evoked efflux of 45Ca2+ was abolished by 2 microM ruthenium red or 0.5 mM MgCl2. Bromo-eudistomin D was found to be 400 times more potent than caffeine in its Ca2+-releasing action but was similar in its action in other respects. These results indicate that bromo-eudistomin D may induce Ca2+ release from the sarcoplasmic reticulum through physiologically relevant Ca2+ channels.  相似文献   

18.
The effects of zero extracellular Ca2+ on the contractility of rat diaphragmatic strips in vitro were studied in conjunction with various pharmacological agents known to influence the intracellular Ca2+ concentration: the Na+ ionophore, monensin, and the Na(+)-K+ pump inhibitor, ouabain, which enhance [Ca2+]i, caffeine, which induces Ca2+ release from the sarcoplasmic reticulum (SR), and ryanodine, which prevents Ca2+ retention by the SR. The effect of increasing [Ca2+]i on diaphragmatic contraction was assessed by comparing contractions induced by 120 mM K+ in the small muscle strips before and after the addition of ouabain or monensin. Monensin (20 microM) and ouabain (1-100 microM) augmented contractions up to threefold. Treatment of diaphragm strips with 3 nM ryanodine increased baseline tension 360% above the original resting tension but only if the diaphragm was electrically stimulated concurrently; 100 microM ryanodine induced contracture in quiescent tissue. High K+ contractures were of greater magnitude in the presence of ryanodine compared with control, and relaxation time was prolonged by greater than 200%. Ca(2+)-free conditions ameliorated these actions of ryanodine. Ryanodine reduced contractions induced by 10 mM caffeine and nearly abolished them in Ca(2+)-free solution. The data demonstrate that extracellular Ca2+ is important in certain types of contractile responses of the diaphragm and suggest that the processes necessary to utilize extracellular Ca2+ are present in the diaphragm.  相似文献   

19.
20.
The effects of eugenol on the sarcoplasmic reticulum (SR) and contractile apparatus of chemically skinned skeletal muscle fibers of the frog Rana catesbeiana were investigated. In saponin-skinned fibers, eugenol (5 mmol/L) induced muscle contractions, probably by releasing Ca(2+) from the SR. The Ca(2+)-induced Ca(2+) release blocker ruthenium red (10 micromol/L) inhibited both caffeine- and eugenol-induced muscle contractions. Ryanodine (200 micromol/L), a specific ryanodine receptor/Ca(2+) release channel blocker, promoted complete inhibition of the contractions induced by caffeine, but only partially blocked the contractions induced by eugenol. Heparin (2.5 mg/mL), an inositol 1,4,5-trisphosphate (InsP3) receptor blocker, strongly inhibited the contractions induced by eugenol but had only a small effect on the caffeine-induced contractions. Eugenol neither altered the Ca(2+) sensitivity nor the maximal force in Triton X-100 skinned muscle fibers. These data suggest that muscle contraction induced by eugenol involves at least 2 mechanisms of Ca(2+) release from the SR: one related to the activation of the ryanodine receptors and another through a heparin-sensitive pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号