首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We sought to determine the role of IL-6 as a mediator of the alterations in gut barrier function that occur after hemorrhagic shock and resuscitation (HS/R). C57Bl/6 wild-type (WT) and IL-6 knockout (KO) mice on a C57Bl/6 background were subjected to either a sham procedure or HS/R. Organ and tissue samples were obtained 4 h after resuscitation. In WT mice, HS/R significantly increased ileal mucosal permeability to fluorescein isothiocyanate-labeled dextran (average molecular mass, 4 kDa) and bacterial translocation to mesenteric lymph nodes. These alterations in gut barrier function were not observed in IL-6 KO animals. HS/R increased ileal steady-state mRNA levels for IL-6, TNF, and IL-10 in WT but not in IL-6 KO mice. Ileal mucosal expression of the tight junction protein, ZO-1, decreased after HS/R in WT but not IL-6 KO mice. Collectively, these data support the view that expression of IL-6 is essential for the development of gut barrier dysfunction after HS/R.  相似文献   

2.
The receptor for advanced glycation end products (RAGE) has been implicated in the pathogenesis of numerous conditions associated with excessive inflammation. To determine whether RAGE-dependent signaling is important in the development of intestinal barrier dysfunction after hemorrhagic shock and resuscitation (HS/R), C57Bl/6, rage(-/-), or congenic rage(+/+) mice were subjected to HS/R (mean arterial pressure of 25 mmHg for 3 h) or a sham procedure. Twenty-four hours later, bacterial translocation to mesenteric lymph nodes and ileal mucosal permeability to FITC-labeled dextran were assessed. Additionally, samples of ileum were obtained for immunofluorescence microscopy, and plasma was collected for measuring IL-6 and IL-10 levels. HS/R in C57Bl/6 mice was associated with increased bacterial translocation, ileal mucosal hyperpermeability, and high circulating levels of IL-6. All of these effects were prevented when C57Bl/6 mice were treated with recombinant human soluble RAGE (sRAGE; the extracellular ligand-binding domain of RAGE). HS/R induced bacterial translocation, ileal mucosal hyperpermeability, and high plasma IL-6 levels in rage(+/+) but not rage(-/-) mice. Circulating IL-10 levels were higher in rage(-/-) compared with rage(+/+) mice. These results suggest that activation of RAGE-dependent signaling is a key factor leading to gut mucosal barrier dysfunction after HS/R.  相似文献   

3.
Administration of pyruvate, an effective scavenger of reactive oxygen species, has been shown to be salutary in numerous models of redox-mediated tissue or organ injury. Pyruvate, however, is unstable in solution and, hence, is not attractive for development as a therapeutic agent. Herein, ethyl pyruvate, which is thought to be more stable than the parent compound, was formulated in a calcium-containing balanced salt solution [Ringer ethyl pyruvate solution (REPS)] and evaluated in a murine model of hemorrhagic shock and resuscitation (HS/R). Resuscitation with REPS instead of Ringer lactate solution (RLS) significantly improved survival at 24 h and abrogated bacterial translocation to mesenteric lymph nodes and the development of increased ileal mucosal permeability to FITC-labeled dextran (4,000 Da) at 4 h. Mice treated with REPS instead of RLS also had lower circulating levels of alanine aminotransferase at 4 h. Treatment with REPS instead of RLS decreased activation of nuclear factor-kappaB in liver and colonic mucosa after HS/R and also decreased the expression of inducible nitric oxide synthase, tumor necrosis factor, cyclooxygenase-2, and interleukin-6 mRNA in liver, ileal mucosa, and/or colonic mucosa. These data support the view that resuscitation with REPS modulates the inflammatory response and decreases hepatocellular and gut mucosal injury in mice subjected to HS/R.  相似文献   

4.
Polymorphonuclear neutrophils (PMNs) play a critical role in intestinal mucosal injury and repair. To study effects of PMNs on acutely injured mucosa, we applied PMNs isolated from circulation or peritoneal fluid from animals with chemically induced peritonitis to ischemia-injured porcine ileal mucosa. In preliminary experiments, PMNs enhanced recovery of transepithelial electrical resistance (TER), and this action was inhibited by pretreatment with the nonselective cyclooxygenase (COX) inhibitor indomethacin. Because COX-2 is upregulated by inflammatory mediators such as IL-1beta, which is released by PMNs, we postulated that PMNs enhance recovery of ischemia-injured mucosa by a pathway involving IL-1beta and COX-2. Application of 5 x 10(6) PMNs to the serosal surface of ischemia-injured mucosa significantly enhanced recovery of TER (P < 0.05), an effect that was inhibited by the selective COX-2 inhibitor NS-398 (5 microM) and by an IL-1beta receptor antagonist (0.1 mg/ml). Addition of 10 ng/ml IL-1beta to the serosal surface of injured tissues caused a significant increase in TER (P < 0.05) that was inhibited by pretreatment with NS-398. Western blot analysis of mucosal homogenates revealed dramatic upregulation of COX-2 in response to IL-1beta or peritoneal PMNs, and the latter was inhibited by an IL-1beta receptor antagonist. Real-time PCR revealed that increased mRNA COX-2 expression preceded increased COX-2 protein expression in response to IL-1beta. We concluded that PMNs augment recovery of TER in ischemia-injured ileal mucosa via IL-1beta-dependent upregulation of COX-2.  相似文献   

5.
Toll-like receptor 2 (TLR2) recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R) injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO), a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and cyclooxygenase-2 (COX-2) in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory mediators such as TNF-α and ICAM-1.  相似文献   

6.
IL-10 is a potent anti-inflammatory and immune regulatory cytokine. IL-10(-/-) mice produce exaggerated amounts of inflammatory cytokines when stimulated with LPS, indicating that endogenous IL-10 is a central regulator of inflammatory cytokine production in vivo. PGs are lipid mediators that are also produced in large amounts during the inflammatory response. To study the role of IL-10 in the regulation of PG production during the acute inflammatory response, we evaluated LPS-induced cyclooxygenase (COX) expression and PG production in wild-type (wt) and IL-10(-/-) mice. LPS-induced PGE(2) production from IL-10(-/-) spleen cells was 5.6-fold greater than that from wt spleen cells. LPS stimulation resulted in the induction of COX-2 mRNA and protein in both wt and IL-10(-/-) spleen cells; however, the magnitude of increase in COX-2 mRNA was 5.5-fold greater in IL-10(-/-) mice as compared with wt mice. COX-1 protein levels were not affected by LPS stimulation in either wt or IL-10(-/-) mice. Neutralization of IFN-gamma, TNF-alpha, or IL-12 markedly decreased the induction of COX-2 in IL-10(-/-) spleen cells, suggesting that increased inflammatory cytokine production mediates much of the COX-2 induction in IL-10(-/-) mice. Treatment of IL-10(-/-) mice with low doses of LPS resulted in a marked induction of COX-2 mRNA in the spleen, whereas wt mice had minimal expression of COX-2 mRNA. These findings indicate that, in addition to IL-10's central role in the regulation of inflammatory cytokines, endogenous IL-10 is an important regulator of PG production in the response to LPS.  相似文献   

7.
Intestinal barrier dysfunction occurs following hemorrhagic shock and resuscitation (HS/R). High-mobility group B1 (HMGB1) has been shown to increase the permeability of Caco-2 human enterocyte-like epithelial monolayers in vitro. In this study, we found that serum concentrations of HMGB1 were higher in blood samples obtained from 25 trauma victims with hemorrhagic shock than in 9 normal volunteers. We also studied whether treatment with anti-HMGB1 antibody can ameliorate HS/R-induced gut barrier dysfunction in mice. Animals were shocked by withdrawal of blood to maintain mean arterial pressure at 25 to 30 mmHg for 2 h. After resuscitation with shed blood plus Ringer's lactate solution, the mice were treated with either anti-HMGB1 antibody or nonimmune rabbit IgG. Serum HMGB1 concentrations were significantly higher in trauma victims than control mice. Treatment with anti-HMGB1 antibody improved survival at 24 h and ameliorated the development of ileal mucosal hyperpermeability to FITC-labeled dextran. At 24 h after HS/R, treatment with anti-HMGB1 antibody decreased bacterial translocation to mesenteric lymph nodes and was associated with lower circulating concentrations of IL-6 and IL-10. These data support the notion that HMGB1 is a mediator of HS/R-induced gut barrier dysfunction and suggest that anti-HMGB1 antibodies warrant further evaluation as a therapeutic to ameliorate the morbidity of HS/R in trauma patients.  相似文献   

8.
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates innate and adaptive immunity. Recent studies have shown that the activation of TLR-dependent signaling pathways plays important roles in the pathogenesis of ischemia-reperfusion (I/R) injuries in many organs. All TLRs, except TLR3, use a common adaptor protein, MyD88, to transduce activation signals. We investigated the role of MyD88 in I/R injury of the small intestine. MyD88 and cyclooxygenase-2 (COX-2) knockout and wild-type mice were subjected to intestinal I/R injury. I/R-induced small intestinal injury was characterized by infiltration of inflammatory cells, disruption of the mucosal epithelium, destruction of villi, and increases in myeloperoxidase activity and mRNA levels of TNF-α and the IL-8 homolog KC. MyD88 deficiency worsened the severity of I/R injury, as assessed using the histological grading system, measuring luminal contents of hemoglobin (a marker of intestinal bleeding), and counting apoptotic epithelial cells, while it inhibited the increase in mRNA expression of TNF-α and KC. I/R significantly enhanced COX-2 expression and increased PGE(2) concentration in the small intestine of wild-type mice, which were markedly inhibited by MyD88 deficiency. COX-2 knockout mice were also highly susceptible to intestinal I/R injury. Exogenous PGE(2) reduced the severity of injury in both MyD88 and COX-2 knockout mice to the level of wild-type mice. These findings suggest that the MyD88 signaling pathway may inhibit I/R injury in the small intestine by inducing COX-2 expression.  相似文献   

9.
Gut injury and loss of normal intestinal barrier function are key elements in the paradigm of gut-origin systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome (MODS). As hypoxia-inducible factor (HIF-1) is a critical determinant of the physiological and pathophysiological response to hypoxia and ischemia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Using partially HIF-1α-deficient mice in an isolated superior mesenteric artery occlusion (SMAO) intestinal ischemia reperfusion (I/R) injury model (45 min SMAO followed by 3 h of reperfusion), we showed a direct relationship between HIF-1 activation and intestinal I/R injury. Specifically, partial HIF-1α deficiency attenuated SMAO-induced increases in intestinal permeability, lipid peroxidation, mucosal caspase-3 activity, and IL-1β mRNA levels. Furthermore, partial HIF-1α deficiency prevented the induction of ileal mucosal inducible nitric oxide synthase (iNOS) protein levels after SMAO and iNOS deficiency ameliorated SMAO-induced villus injury. Resistance to SMAO-induced gut injury was also associated with resistance to lung injury, as reflected by decreased levels of myeloperoxidase, IL-6 and IL-10 in the lungs of HIF-1α(+/-) mice. In contrast, a short duration of SMAO (15 min) followed by 3 h of reperfusion neither induced mucosal HIF-1α protein levels nor caused significant gut and lung injury in wild-type or HIF-1α(+/-) mice. This study indicates that intestinal HIF-1 activation is a proximal regulator of I/R-induced gut mucosal injury and gut-induced lung injury. However, the duration and severity of the gut I/R insult dictate whether HIF-1 plays a gut-protective or deleterious role.  相似文献   

10.
Kainic acid (KA) binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/-)) mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/-) mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/-) mice compared to wild type (WT) mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/-) mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/-) compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/-) mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/-) mice. After KA exposure, COX-2(-/-) mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6), inducible nitric oxide synthase (iNOS), microglia (CD11b) and astrocyte (GFAP). Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/-) mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the glutamatergic system.  相似文献   

11.
Interleukin-10 is known to modulate the systemic inflammatory response after trauma. This study investigates differences in the systemic and end-organ inflammation in animals treated with either inhalative or systemic IL-10 after experimental hemorrhagic shock (HS). Pressure controlled HS was performed in C57/BL6 mice for 1.5h (6 animals per group). Inhalative or systemic recombinant mouse IL-10 (50μg/kg dissolved in 50μl PBS) was administered after resuscitation. Animals were sacrificed after 4.5 or 22.5h of recovery. Serum levels of IL-6, IL-10, KC, MCP-1, and LBP were determined by ELISA. Pulmonary and liver inflammation was analyzed by standardized Myeloperoxidase (MPO) kits. Systemic and inhalative IL-10 administration affected the systemic inflammatory response as well as end-organ inflammation differently. Differences were obvious in the early (6h) but not later (24h) inflammatory phase. Systemic IL-10 application was associated with a decreased systemic inflammatory response as well as hepatic inflammation, whereas nebulized IL-10 solely reduced the pulmonary inflammation. Our study demonstrates that systemic and nebulized IL-10 administration differentially influenced the systemic cytokine response and end-organ inflammation. Early pulmonary but not hepatic protection appears to be possible by inhalative IL-10 application. Further studies are necessary to assess exact pathways.  相似文献   

12.
In hemorrhagic shock (HS), increased cytokine production contributes to tissue inflammation and injury through the recruitment of neutrophils [polymorphonuclear cells (PMN)]. HS stimulates the early expression of inducible nitric oxide synthase (iNOS) that modulates proinflammatory activation after hemorrhage. Experiments were performed to determine the contribution of iNOS to gut inflammation and dysmotility after HS. Rats subjected to HS (mean arterial pressure 40 mmHg for 2.5 h followed by resuscitation and death at 4 h) demonstrated histological signs of mucosal injury, impairment of intestinal smooth muscle contractility, extravasation of PMN, and increased gut mRNA levels of ICAM-1, IL-6, and granulocyte colony-stimulating factor (G-CSF). In addition, DNA binding activity of NF-kappaB and Stat3, an IL-6 signaling intermediate, was significantly increased. In shocked rats treated with the selective iNOS inhibitor l-N(6)-(1-iminoethyl)lysine at the time of resuscitation, histological signs of intestinal injury and PMN infiltration were reduced and muscle contractility was almost completely restored. Selective iNOS inhibition in shocked animals reduced the binding activity of NF-kappaB and Stat3 and reduced mRNA levels of ICAM-1, IL-6, and G-CSF. The results of studies using iNOS knockout mice subjected to HS were similar. We propose that early upregulation of iNOS contributes to the inflammatory response in the gut wall and participates in the activation of signaling cascades and cytokine expression that regulate intestinal injury, PMN recruitment, and impaired gut motility.  相似文献   

13.
14.
The influence of endogenous gram-negative bacteria colonizing the mucosal epithelium of frog Rana temporaria L. urinary bladders (FUB) on arginine-vasotocin AVT-stimulated osmotic water flow in isolated urinary bladders was investigated. 170 animals were examined and only 40% were contaminated with gram-negative bacteria (about 10(3)-10(6) CFU per hemibladder). Several Enterobacteriaceae species were identified (Hafnia alvei, 36.7%, E. coli, 32.3%, Serratia marcescens, 8.8%, Citrobacter freundii, 4.4% etc.). Basal osmotic water flow level was invariable in "clean" and contaminated FUB, whereas bacterial contamination resulted in considerable decrease in AVT-stimulated water flow ("clean": 2.53 +/- 0.13, n = 59, contaminated: 1.21 +/- 0.17 me/min/cm2, n = 38, p < 0.001, within first 15 min of incubation with 5 x 10(-10)M AVT). Gentamycin protection assay revealed predominantly adhesive forms of bacteria. Thus our data indicated that the presence of gram-negative bacteria colonizing the mucosal epithelium of the urinary bladder results in decreased adility of ADH to rise osmotic water permeability which in turn could impair body osmoregulation.  相似文献   

15.
Lipopolysaccharide (LPS) has essential role in the pathogenesis of D-galactosamine-sensitized animal models and alcoholic liver diseases of humans, by stimulating release of pro-inflammatory mediators that cause hepatic damage and intestinal barrier impairment. Oral pretreatment of probiotics has been shown to attenuate LPS-induced hepatic injury, but it is unclear whether the effect is direct or due to improvement in the intestinal barrier. The present study tested the hypothesis that pretreatment with probiotics enables the liver to withstand directly LPS-induced hepatic injury and inflammation. In a mouse model of LPS-induced hepatic injury, the levels of hepatic tumor necrosis factor-alpha (TNF-α) and serum alanine aminotransferase (ALT) of mice with depleted intestinal commensal bacteria were not significantly different from that of the control models. Pre-feeding mice for 10 days with Lactobacillus fermentum ZYL0401 (LF41), significantly alleviated LPS-induced hepatic TNF-α expression and liver damage. After LF41 pretreatment, mice had dramatically more L.fermentum-specific DNA in the ileum, significantly higher levels of ileal cyclooxygenase (COX)-2 and interleukin 10 (IL-10) and hepatic prostaglandin E2 (PGE2). However, hepatic COX-1, COX-2, and IL-10 protein levels were not changed after the pretreatment. There were also higher hepatic IL-10 protein levels after LPS challenge in LF41-pretreaed mice than in the control mice. Attenuation of hepatic TNF-α was mediated via the PGE2/E prostanoid 4 (EP4) pathway, and serum ALT levels were attenuated in an IL-10-dependent manner. A COX-2 blockade abolished the increase in hepatic PGE2 and IL-10 associated with LF41. In LF41-pretreated mice, a blockade of IL-10 caused COX-2-dependent promotion of hepatic PGE2, without affecting hepatic COX-2levels. In LF41-pretreated mice, COX2 prevented enhancing TNF-α expression in both hepatic mononuclear cells and the ileum, and averted TNF-α-mediated increase in intestinal permeability. Together, we demonstrated that LF41 pre-feeding enabled the liver to alleviate LPS-induced hepatic TNF-α expression and injury via a PGE2-EP4- and IL-10-dependent mechanism.  相似文献   

16.
17.
The aim of this study was to integrate human clinical, genotype, mRNA microarray and 16 S rRNA sequence data collected on 84 subjects with ileal Crohn's disease, ulcerative colitis or control patients without inflammatory bowel diseases in order to interrogate how host-microbial interactions are perturbed in inflammatory bowel diseases (IBD). Ex-vivo ileal mucosal biopsies were collected from the disease unaffected proximal margin of the ileum resected from patients who were undergoing initial intestinal surgery. Both RNA and DNA were extracted from the mucosal biopsy samples. Patients were genotyped for the three major NOD2 variants (Leufs1007, R702W, and G908R) and the ATG16L1T300A variant. Whole human genome mRNA expression profiles were generated using Agilent microarrays. Microbial composition profiles were determined by 454 pyrosequencing of the V3-V5 hypervariable region of the bacterial 16 S rRNA gene. The results of permutation based multivariate analysis of variance and covariance (MANCOVA) support the hypothesis that host mucosal Paneth cell and xenobiotic metabolism genes play an important role in host microbial interactions.  相似文献   

18.
Salmonella typhimurium causes a localized enteric infection in immunocompetent individuals, whereas HIV-infected individuals develop a life-threatening bacteremia. Here we show that simian immunodeficiency virus (SIV) infection results in depletion of T helper type 17 (TH17) cells in the ileal mucosa of rhesus macaques, thereby impairing mucosal barrier functions to S. typhimurium dissemination. In SIV-negative macaques, the gene expression profile induced by S. typhimurium in ligated ileal loops was dominated by TH17 responses, including the expression of interleukin-17 (IL-17) and IL-22. TH17 cells were markedly depleted in SIV-infected rhesus macaques, resulting in blunted TH17 responses to S. typhimurium infection and increased bacterial dissemination. IL-17 receptor-deficient mice showed increased systemic dissemination of S. typhimurium from the gut, suggesting that IL-17 deficiency causes defects in mucosal barrier function. We conclude that SIV infection impairs the IL-17 axis, an arm of the mucosal immune response preventing systemic microbial dissemination from the gastrointestinal tract.  相似文献   

19.
Sepsis is associated with increased intestinal permeability, but mediators and mechanisms are not fully understood. We examined the role of interleukin (IL)-6 and IL-10 in sepsis-induced increase in intestinal permeability. Intestinal permeability was measured in IL-6 knockout (IL-6 -/-) and wild-type (IL-6 +/+) mice 16 h after induction of sepsis by cecal ligation and puncture or sham operation. In other experiments, mice or intestinal segments incubated in Ussing chambers were treated with IL-6 or IL-10. Intestinal permeability was assessed by determining the transmucosal transport of the 4.4-kDa marker fluorescein isothiocyanate conjugated dextran and the 40-kDa horseradish peroxidase. Intestinal permeability for both markers was increased in septic IL-6 +/+ mice but not in septic IL-6 -/- mice. Treatment of nonseptic mice or of intestinal segments in Ussing chambers with IL-6 did not influence intestinal permeability. Plasma IL-10 levels were increased in septic IL-6 -/- mice, and treatment of septic mice with IL-10 resulted in reduced intestinal permeability. Increased intestinal permeability during sepsis may be regulated by an interaction between IL-6 and IL-10. Treatment with IL-10 may prevent the increase in mucosal permeability during sepsis.  相似文献   

20.
Although numerous studies have demonstrated the ability of intestinal epithelial cells to produce PGs after infection with wild-type strains of Salmonella, few studies have focused on Salmonella-induced prostanoids in mucosal lymphoid tissues. This is surprising in view of the profound effects PGs can have on the host response. To begin to address PG production at mucosal sites, mice were orally inoculated with Salmonella, and at varying times postinfection cyclooxygenase-2 (COX-2) mRNA expression and PGE(2) synthesis were investigated. COX-2 mRNA expression was highly inducible in the mesenteric lymph nodes, whereas COX-1 mRNA levels were constitutive. PGE(2) production also increased significantly in the mesenteric lymph nodes following exposure to viable Salmonella, but not after exposure to killed bacteria. This increased PGE(2) response could be blocked by treatment of mice with the selective COX-2 inhibitor, celecoxib. Treatment of mice with celecoxib during salmonellosis resulted in increased viable bacteria in the mesenteric lymph nodes by day 3 postinfection. However, celecoxib treatment prolonged the survival of lethally infected animals. In vitro studies demonstrated Salmonella-induced up-regulation of COX-2 mRNA expression and PGE(2) secretion by both macrophages and dendritic cells, which could also be blocked in the presence of celecoxib. Interestingly, exposure of these cultured APCs to viable Salmonella was a much greater stimulus for induction of PGE(2) synthesis than exposure to Salmonella-derived LPS. The present study demonstrates induction of PGE(2) synthesis in mesenteric lymph nodes, macrophages, and dendritic cells after infection with wild-type salmonella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号