首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
2.
We investigated the role of circulating ANG II in sodium appetite after adrenalectomy. Adrenalectomized rats deprived of their main access to sodium (0.3 M NaCl) for 9 h drank 14.1 +/- 1.5 ml of the concentrated saline solution in 2 h of access. Intravenous infusion of captopril (2.5 mg/h) during the last 5 h of sodium restriction reduced sodium intake by 77 +/- 12% (n = 5) without affecting the degree of sodium depletion and hypovolemia incurred during deprivation. Functional evidence indicates that this dose of captopril blocked production of ANG II in the peripheral circulation, but not in the brain; that is, injection of ANG I into the lateral brain ventricle stimulated intake of both water and 0.3 M NaCl. Intravenous infusion of ANG II (starting 10-15 min before 0.3 M NaCl became available) in adrenalectomized, captopril-treated rats restored both sodium intake and blood pressure to values seen in rats not treated with captopril. Longer (20 h) infusions of captopril in 22-h sodium-restricted rats also blocked sodium appetite, but reduced or prevented sodium depletion. Intravenous infusion of ANG II after these long captopril infusions stimulated sodium intake, but intake was less than in controls not treated with captopril. These results indicate that most or all of the sodium appetite of adrenalectomized rats is mediated by circulating ANG II.  相似文献   

3.
Alan N. Epstein 《Peptides》1982,3(3):493-494
The sodium appetite that follows sodium deficiency may be aroused by a synergy of the hormones of sodium deficiency (angiotensin and mineralocorticoid) rather than by the deficiency itself. Recent evidence supporting this idea is discussed with emphasis on the possibility that angiotensin of cerebral origin may be more effective in this synergy than that of renal origin.  相似文献   

4.
In hypertension or other forms of cardiovascular disease, the chronic activation of the renin-angiotensin-aldosterone system (RAAS) leads to dysfunction of the vasculature, including, increased vascular tone, inflammation, fibrosis and thrombosis. Cross-talk between the main mediators of the RAAS, aldosterone and angiotensin (Ang) II, participates in the development of this vascular dysfunction. Recent studies have highlighted the molecular mechanisms supporting this cross-talk in vascular smooth muscle cells (VSMCs). Some of the signaling pathways activated by the Ang II type 1 receptor (AT1R) are dependent on the mineralocorticoid receptor (MR) and vice versa. VSMC signaling pathways involved in migration and growth are under the control of cross-talk between aldosterone and Ang II. A synergistic mechanism leads to potentiation of signaling pathways activated by each agent. The genomic and non-genomic mechanisms activated by aldosterone cooperate with Ang II to regulate vascular tone and gene expression of pro-inflammatory and pro-fibrotic molecules. This cross-talk is dependent on the non-receptor tyrosine kinase c-Src, and on receptor tyrosine kinases, EGFR and PDGFR, and leads to activation of MAP kinases and growth, migration and inflammatory effects. These new findings will contribute to development of better treatments for conditions in which the RAAS is excessively activated.  相似文献   

5.
Intraventricular injections of vasopressin (VP) and antagonists with varying degrees of specificity for the VP receptors were used to identify the action of endogenous brain VP on 0.3 M NaCl intake by sodium-deficient rats. Lateral ventricular injections of 100 ng and 1 microg VP caused barrel rotations and a dramatic decrease in NaCl intake by sodium-deficient rats and suppressed sucrose intake. Intraventricular injection of the V(1)/V(2) receptor antagonist [d(CH(2))(5)(1),O-Et-Tyr(2),Val(4), Arg(8)]VP and the V(1) receptor antagonist [d(CH(2))(5)(1),O-Me-Tyr(2),Arg(8)]VP (MeT-AVP) significantly suppressed NaCl intake by sodium-deficient rats without causing motor disturbances. MeT-AVP had no effect on sucrose intake (0.1 M). In contrast, the selective V(2) receptor antagonist had no significant effect on NaCl intake. Last, injections of 100 ng MeT-AVP decreased mean arterial blood pressure (MAP), whereas 100 ng VP elevated MAP and pretreatment with MeT-AVP blocked the pressor effect of VP. These results indicate that the effects produced by 100 ng MeT-AVP represent receptor antagonistic activity. These findings suggest that the effect of exogenous VP on salt intake is secondary to motor disruptions and that endogenous brain VP neurotransmission acting at V(1) receptors plays a role in the arousal of salt appetite.  相似文献   

6.
7.
Aldosterone has been recognized as an important sodium retaining hormone for many years. Recently we have demonstrated that angiotensin II has a much more powerful antinatriuretic effect than that of aldosterone. The importance of angiotensin II in regulation of sodium excretion has been observed in experiments in which angiotensin II has been infused intravenously or into the renal artery in acute and chronic situations, and in studies involving blockade of angiotensin II formation. In other experiments we have studied the effects of changes in renal perfusion pressure on sodium excretion. While earlier work by others indicated that an acute 10 mm Hg increase in perfusion pressure would increase sodium excretion 60%-70% we observed that a chronic 10 mm Hg change in perfusion pressure would result in a 300% change in sodium excretion. In view of evidence suggesting that changes in the ability of the kidney to excrete sodium normally at normal arterial pressure is an important element in hypertension we studied the effects of aldosterone and angiotensin II on arterial pressure regulation in normal dogs. High physiological levels of each hormone were infused intravenously for several weeks. Both produced sustained hypertension. Aldosterone hypertension was a typical volume loading type with sodium retention, increased blood volume and extracellular fluid volume and a slow rise in arterial pressure. Angiotensin hypertension was a typical vasoconstrictor type with high peripheral resistance, normal or decreased blood volume, decreased cardiac output, a rapid rise in arterial pressure and only initial sodium retention.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Rats with bilateral lesions of the lateral hypothalamus (LH) fail to exhibit sodium appetite. Lesions of the parabrachial nuclei (PBN) also block salt appetite. The PBN projection to the LH is largely ipsilateral. If these deficits are functionally dependent, damaging the PBN on one side and the LH on the other should also block Na appetite. First, bilateral ibotenic acid lesions of the LH were needed because the electrolytic damage used previously destroyed both cells and axons. The ibotenic LH lesions produced substantial weight loss and eliminated Na appetite. Controls with ipsilateral PBN and LH lesions gained weight and displayed robust sodium appetite. The rats with asymmetric PBN-LH lesions also gained weight, but after sodium depletion consistently failed to increase intake of 0.5 M NaCl. These results dissociate loss of sodium appetite from the classic weight loss after LH damage and prove that Na appetite requires communication between neurons in the LH and the PBN.  相似文献   

9.
Intracranial renin is a potent stimulus to sodium appetite and thirst, the effects being mediated by local generation of angiotensin II. Intakes are persistent and lead to fluid retention during the first 24 h (Avrith and Fitzsimons, 1983). Increased circulating renin after captopril treatment in adrenalectomized rats (Elfont and Fitzsimons, 1981), or in renal hypertension following partial inter-renal aortic ligation (Costales et al., 1982), also leads to increased intakes of 2.7% NaCl and water. Fluid intakes after aortic ligation were independent of the severity of hypertension produced by this procedure. In both the examples given, additional stimulation resulting from the hypovolaemia itself is required for the full expression of increased sodium appetite, but in both cases angiotensin makes a significant contribution to sodium appetite as well as thirst. Therefore, as has been shown for thirst, angiotensin is one of a number of factors that act together to cause increased sodium appetite in hypovolaemia.  相似文献   

10.
11.
The s.c. injection of aldosterone (10 micrograms/kg) induces a release of vasopressin. The peak of plasma vasopressin level occurs at the same time as the late in vivo effect of aldosterone on passive 22Na efflux from arterial smooth muscle. These results indicate that vasopressin mediates the delayed in vivo effects of aldosterone on ouabain-insensitive 22Na efflux, since on the other hand, it has been possible to show that the action of the peptide is accelerated by a previous exposure to the mineralocorticoid. Indeed, after a 120-min pretreatment with 10(-8) M aldosterone, vasopressin induces an effect on 22Na efflux in 30 min, as opposed to the 120 min needed in the absence of the steroid.  相似文献   

12.
13.
Recent experiments with specific aminopeptidase inhibitors in rats have strengthened earlier proposals that ANG III may be an important regulatory peptide in the brain. Central mechanisms regulating blood pressure, ingestive behaviors, and vasopressin release could be involved. Arguments in favor of a role for ANG III depend, in part, on the efficacy of ANG III as an agonist. These first studies in primates tested whether ANG III stimulates ingestive behaviors in baboons. Intracerebroventricular (ICV) infusions of ANG III were as potent as ANG II in stimulating water drinking and intake of NaCl solution. On the basis of this criterion and consistent with findings in rats, ANG III could be a main effector peptide in the regulation of ingestive behaviors in a primate.  相似文献   

14.
15.
Both systemically administered furosemide and isoproterenol produce water intake (i.e., thirst). Curiously, however, in light of the endocrine and hemodynamic effects produced by these treatments, they are remarkably ineffective in eliciting intake of hypertonic saline solutions (i.e., operationally defined as sodium appetite). Recent work indicates that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nuclei (LPBN) markedly enhance a preexisting sodium appetite. The present studies establish that a de novo sodium appetite can be induced with LPBN-methysergide treatment under experimental conditions in which only water is typically ingested. The effects of bilateral LPBN injections of methysergide were studied on the intake of water and 0. 3 M NaCl following acute (beginning 1 h after treatment) diuretic (furosemide)-induced sodium and water depletion and following subcutaneous isoproterenol treatment. With vehicle injected into the LPBN, furosemide treatment and isoproterenol injection both caused water drinking but essentially no intake of hypertonic saline. In contrast, bilateral treatment of the LPBN with methysergide induced the intake of 0.3 M NaCl after subcutaneous furosemide and isoproterenol. Water intake induced by subcutaneous furosemide or isoproterenol was not changed by LPBN-methysergide injections. The results indicate that blockade of LPBN-serotonin receptors produces a marked intake of hypertonic NaCl (i.e., a de novo sodium appetite) after furosemide treatment as well as subcutaneous isoproterenol.  相似文献   

16.
17.
Variables of renin-angiotensin-aldosterone axis with inclusion of protein binding to specific plasma globulin (ABG), plasma cortisol, and the blood pressure (BP) were measured in 24 chimpanzees, 4 gorillas, and 16 cynomolgus monkeys. ABG activity was readily detected in plasma from the primates. In chimpanzees and gorillas, all the variables under baseline conditions were similar to those in humans. In cynomolgus (Macaca fascicularis), both the ABG binding capacity for aldosterone and the diastolic or systolic BP were significantly higher (p less than 0.001 and p less than 0.01 respectively) than in chimpanzees and gorillas.  相似文献   

18.
19.
20.
We have determined that the adrenal glands of patients with the syndromes of low-renin essential hypertension and idiopathic hyperaldosteronism are abnormally sensitive to the steroidogenic effect of angiotensin II. The mechanism of this heightened responsiveness to angiotensin II is unknown but may be due to the bilateral adrenal hyperplasia present in many patients with these low-renin hypertension syndromes. We have found that metoclopramide, a dopamine antagonist, causes three-fold increases in levels of plasma aldosterone in normal subjects. These increases could not be accounted for by changes in plasma renin activity, ACTH or potassium. Metoclopramide does not stimulate bovine adrenal glomerulosa cells to produce aldosterone in vitro, suggesting that it stimulates the secretion of aldosterone in vivo indirectly, by increasing the levels or the activity of an undefined aldosterone stimulating factor. We have also found that human urine, after partial purification, stimulates bovine adrenal glomerulosa cells to produce aldosterone in vitro. Urine samples from patients with low-renin essential hypertension or idiopathic hyperaldosteronism have more stimulating activity than urine samples from normal subjects. These preliminary findings support the hypothesis that excessive production of an undefined aldosterone stimulating factor may be the basic abnormality in some cases of idiopathic hyperaldosteronism and low-renin essential hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号