首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic initiation factor eIF2B is a guanine nucleotide exchange protein involved in regulation of translation initiation. Phosphorylation of the epsilon-subunit is thought to be important in insulin-mediated changes in eIF2B activity. However, elucidation of insulin's action has proven elusive, primarily because eIF2B epsilon is a substrate in vitro for at least three different protein kinases. In the present study, we observed changes in eIF2B epsilon kinase activity only in those muscles previously shown to exhibit alterations in protein synthesis in response to insulin. Specifically, eIF2B epsilon kinase activity was increased in psoas muscle from diabetic rats compared to controls. Treating diabetic rats with insulin rapidly reduced eIF2B epsilon kinase activity below control values. Changes were not observed in heart. To identify the kinase(s) in psoas responsible for phosphorylating eIF2B epsilon, the wildtype and two variant forms of the epsilon-subunit were expressed in and purified from Sf9 insect cells, and were used as substrates in protein kinase assays. The first variant contained a point mutation in the eIF2B epsilon cDNA that converted the glycogen synthase kinase-3 (GSK-3) phosphorylation site, Ser535, to a nonphosphorylatable Ala residue. In the second variant, the putative GSK-3 'priming' site, Ser539, was converted to Asp. Based on the pattern of phosphorylation of the wildtype and two variant forms of eIF2B epsilon using casein kinase (CK)-I, CK-II, or GSK-3 as well as that observed with skeletal muscle extracts, we conclude that the predominant eIF2B epsilon kinase in psoas muscle is GSK-3. Thus, insulin-mediated changes in eIF2B activity are likely to involve GSK-3.  相似文献   

2.
Kleijn M  Proud CG 《FEBS letters》2000,476(3):262-265
Epidermal and nerve growth factors (EGF and NGF) activate protein synthesis and initiation factor eIF2B in rat phaeochromocytoma (PC12) cells. The activation of protein synthesis by EGF or NGF depends upon extracellular regulated kinase kinase (MEK)/extracellular regulated kinase signalling. Here we show that PD98059, an inhibitor of MEK activation, blocks the activation of eIF2B by EGF or NGF. It is known that eIF2B activity can be inhibited by phosphorylation at Ser535 in its epsilon-subunit by glycogen synthase kinase (GSK)-3. We find that inactivation of GSK-3 by EGF or NGF is blocked by PD98059. However, neither EGF nor NGF caused a detectable change in phosphorylation of Ser535 of eIF2Bepsilon. Thus, the EGF- and NGF-induced activation of eIF2B in PC12 cells involves regulatory mechanisms distinct from dephosphorylation of the GSK-3 site.  相似文献   

3.
We examined the role of glycogen synthase kinase-3beta (GSK-3beta) inhibition in airway smooth muscle hypertrophy, a structural change found in patients with severe asthma. LiCl, SB216763, and specific small interfering RNA (siRNA) against GSK-3beta, each of which inhibit GSK-3beta activity or expression, increased human bronchial smooth muscle cell size, protein synthesis, and expression of the contractile proteins alpha-smooth muscle actin, myosin light chain kinase, smooth muscle myosin heavy chain, and SM22. Similar results were obtained following treatment of cells with cardiotrophin (CT)-1, a member of the interleukin-6 superfamily, and transforming growth factor (TGF)-beta, a proasthmatic cytokine. GSK-3beta inhibition increased mRNA expression of alpha-actin and transactivation of nuclear factors of activated T cells and serum response factor. siRNA against eukaryotic translation initiation factor 2Bepsilon (eIF2Bepsilon) attenuated LiCl- and SB216763-induced protein synthesis and expression of alpha-actin and SM22, indicating that eIF2B is required for GSK-3beta-mediated airway smooth muscle hypertrophy. eIF2Bepsilon siRNA also blocked CT-1- but not TGF-beta-induced protein synthesis. Infection of human bronchial smooth muscle cells with pMSCV GSK-3beta-A9, a retroviral vector encoding a constitutively active, nonphosphorylatable GSK-3beta, blocked protein synthesis and alpha-actin expression induced by LiCl, SB216763, and CT-1 but not TGF-beta. Finally, lungs from ovalbumin-sensitized and -challenged mice demonstrated increased alpha-actin and CT-1 mRNA expression, and airway myocytes isolated from ovalbumin-treated mice showed increased cell size and GSK-3beta phosphorylation. These data suggest that inhibition of the GSK-3beta/eIF2Bepsilon translational control pathway contributes to airway smooth muscle hypertrophy in vitro and in vivo. On the other hand, TGF-beta-induced hypertrophy does not depend on GSK-3beta/eIF2B signaling.  相似文献   

4.
In the present study, differential responses of regulatory proteins involved in translation initiation in skeletal muscle and liver during sepsis were studied in neonatal pigs treated with lipopolysaccharide (LPS). LPS did not alter eukaryotic initiation factor (eIF) 2B activity in either tissue. In contrast, binding of eIF4G to eIF4E to form the active mRNA-binding complex was repressed in muscle and enhanced in liver. Phosphorylation of eIF4E-binding protein, 4E-BP1, and ribosomal protein S6 kinase, S6K1, was reduced in muscle during sepsis but increased in liver. Finally, changes in 4E-BP1 and S6K1 phosphorylation were associated with altered phosphorylation of the protein kinase mammalian target of rapamycin (mTOR). Overall, the results suggest that translation initiation in both skeletal muscle and liver is altered during neonatal sepsis by modulation of the mRNA-binding step through changes in mTOR activation. Moreover, the LPS-induced changes in factors that regulate translation initiation are more profound than previously reported changes in global rates of protein synthesis in the neonate. This finding suggests that the initiator methionyl-tRNA-rather than the mRNA-binding step in translation initiation may play a more critical role in maintaining protein synthesis rates in the neonate during sepsis.  相似文献   

5.
Chronic septic abscess formation causes an inhibition of protein synthesis in gastrocnemius that is not observed in rats with a sterile abscess. The inhibition is associated with an impaired translation initiation. The present study was designed to investigate the effects of sepsis on phosphorylation and availability of eukaryotic initiation factor (eIF)4E in gastrocnemius 5 days after induction of a sterile or septic abscess. Neither sepsis nor sterile inflammation altered the extent of eIF4E phosphorylation. Moreover, no changes in the amount of the binding protein 4E-BP1 associated with eIF4E or in the phosphorylation of 4E-BP1 were observed during sepsis or sterile inflammation. In contrast, sepsis and sterile inflammation caused a reduction in the relative amount of eIF4G bound to eIF4E compared with controls. The diminished amount of eIF4G bound to eIF4E was not the result of a reduced abundance of eIF4E. Sepsis, but not sterile inflammation, caused an increase in the cellular abundance of eIF4E. The results provide evidence that alterations in the eIF4E system are probably not rate controlling for the synthesis of total, mixed proteins in gastrocnemius during sepsis. Instead, on the basis of our previous studies, changes in eIF2B appear to be responsible for limiting protein synthesis in skeletal muscle during sepsis.  相似文献   

6.
Eukaryotic initiation factor (eIF) 2B catalyzes a key regulatory step in the initiation of mRNA translation. eIF2B is well characterized in mammals and in yeast, although little is known about it in other eukaryotes. eIF2B is a hetropentamer which mediates the exchange of GDP for GTP on eIF2. In mammals and yeast, its activity is regulated by phosphorylation of eIF2alpha. Here we have cloned Drosophila melanogaster cDNAs encoding polypeptides showing substantial similarity to eIF2B subunits from yeast and mammals. They also exhibit the other conserved features of these proteins. D. melanogaster eIF2Balpha confers regulation of eIF2B function in yeast, while eIF2Bepsilon shows guanine nucleotide exchange activity. In common with mammalian eIF2Bepsilon, D. melanogaster eIF2Bepsilon is phosphorylated by glycogen synthase kinase-3 and casein kinase II. Phosphorylation of partially purified D. melanogaster eIF2B by glycogen synthase kinase-3 inhibits its activity. Extracts of D. melanogaster S2 Schneider cells display eIF2B activity, which is inhibited by phosphorylation of eIF2alpha, showing the insect factor is regulated similarly to eIF2B from other species. In S2 cells, serum starvation increases eIF2alpha phosphorylation, which correlates with inhibition of eIF2B, and both effects are reversed by serum treatment. This shows that eIF2alpha phosphorylation and eIF2B activity are under dynamic regulation by serum. eIF2alpha phosphorylation is also increased by endoplasmic reticulum stress in S2 cells. These are the first data concerning the structure, function or control of eIF2B from D. melanogaster.  相似文献   

7.
Eukaryotic initiation factor (eIF) 2B is a heteromeric guanine nucleotide exchange factor that plays an important role in regulating mRNA translation. Here we identify multiple phosphorylation sites in the largest, catalytic, subunit (epsilon) of mammalian eIF2B. These sites are phosphorylated by four different protein kinases. Two conserved sites (Ser712/713) are phosphorylated by casein kinase 2. They lie at the extreme C-terminus and are required for the interaction of eIF2Bepsilon with its substrate, eIF2, in vivo and for eIF2B activity in vitro. Glycogen synthase kinase 3 (GSK3) is responsible for phosphorylating Ser535. This regulatory phosphorylation event requires both the fourth site (Ser539) and a distal region, which acts to recruit GSK3 to eIF2Bepsilon in vivo. The fifth site, which lies outside the catalytic domain of eIF2Bepsilon, can be phosphorylated by casein kinase 1. All five sites are phosphorylated in the eIF2B complex in vivo.  相似文献   

8.
The contribution of mammalian target of rapamycin (mTOR) signaling to the resistance exercise-induced stimulation of skeletal muscle protein synthesis was assessed by administering rapamycin to Sprague-Dawley rats 2 h prior to a bout of resistance exercise. Animals were sacrificed 16 h postexercise, and gastrocnemius protein synthesis, mTOR signaling, and biomarkers of translation initiation were assessed. Exercise stimulated the rate of protein synthesis; however, this effect was prevented by pretreatment with rapamycin. The stimulation of protein synthesis was mediated by an increase in translation initiation, since exercise caused an increase in polysome aggregation that was abrogated by rapamycin administration. Taken together, the data suggest that the effect of rapamycin was not mediated by reduced phosphorylation of eukaryotic initiation factor 4E (eIF4E) binding protein 1 (BP1), because exercise did not cause a significant change in 4E-BP1(Thr-70) phosphorylation, 4E-BP1-eIF4E association, or eIF4F complex assembly concomitant with increased protein synthetic rates. Alternatively, there was a rapamycin-sensitive decrease in relative eIF2Bepsilon(Ser-535) phosphorylation that was explained by a significant increase in the expression of eIF2Bepsilon protein. The proportion of eIF2Bepsilon mRNA in polysomes was increased following exercise, an effect that was prevented by rapamycin treatment, suggesting that the increase in eIF2Bepsilon protein expression was mediated by an mTOR-dependent increase in translation of the mRNA encoding the protein. The increase in eIF2Bepsilon mRNA translation and protein abundance occurred independent of similar changes in other eIF2B subunits. These data suggest a novel link between mTOR signaling and eIF2Bepsilon mRNA translation that could contribute to the stimulation of protein synthesis following acute resistance exercise.  相似文献   

9.
Sepsis blunts the ability of nutrient signaling by leucine to stimulate skeletal muscle protein synthesis by impairing translation initiation. The present study tested the hypothesis that overproduction of either tumor necrosis factor (TNF)-alpha or glucocorticoids mediate the sepsis-induced leucine resistance. Prior to producing peritonitis, rats received either vehicle, TNF binding protein (TNF(BP)) to inhibit endogenous TNFalpha action, and/or the glucocorticoid receptor antagonist RU486. Leucine was orally administered to all rats 24 h thereafter and the gastrocnemius removed 20 min later to assess protein synthesis and signaling components important in controlling peptide-chain initiation. Muscle protein synthesis was 65% lower in septic rats administered leucine than in leucine-treated control animals. This reduction was not prevented by either TNF(BP) or RU486 alone, but was completely reversed by the combination. This sepsis-induced leucine resistance was associated with an 80% reduction in the amount of active eIF4E.eIF4G complex, a 5-fold increase in the formation of the inactive eIF4E.4E-BP1 complex as well as markedly reduced (at least 70%) phosphorylation of 4E-BP1, eIF4G, S6K1, S6, and mTOR. Pretreatment of septic rats with either TNF(BP) or RU486 individually only nominally improved the leucine action as assessed by the above-mentioned endpoints. In contrast, when TNF(BP) and RU486 were co-administered, the ability of sepsis to impair the leucine-stimulated phosphorylation of 4E-BP1, eIF4G, S6K1, and S6 as well as the redistribution of eIF4E was essentially prevented. No differences in the total amount or phosphorylation of eIF2alpha and eIF2Bepsilon were detected between the different groups, and changes could not be attributed to differences in the prevailing plasma concentration of insulin or leucine. Our data demonstrate the sepsis-induced leucine resistance in skeletal muscle results from the cooperative interaction of both TNFalpha and glucocorticoids.  相似文献   

10.
Feeding promotes protein accretion in skeletal muscle through a stimulation of the mRNA translation initiation phase of protein synthesis either secondarily to nutrient-induced rises in insulin or owing to direct effects of nutrients themselves. The present set of experiments establishes the effects of meal feeding on potential signal transduction pathways that may be important in accelerating mRNA translation initiation. Gastrocnemius muscle from male Sprague-Dawley rats trained to consume a meal consisting of rat chow was sampled before, during, and after the meal. Meal feeding enhanced the assembly of the active eIF4G.eIF4E complex, which returned to basal levels within 3 h of removal of food. The increased assembly of the active eIF4G.eIF4E complex was associated with a marked 10-fold rise in phosphorylation of eIF4G(Ser(1108)) and a decreased assembly of inactive 4E-BP1.eIF4E complex. The reduced assembly of 4E-BP1.eIF4E complex was associated with a 75-fold increase in phosphorylation of 4E-BP1 in the gamma-form during feeding. Phosphorylation of S6K1 on Ser(789) was increased by meal feeding, although the extent of phosphorylation was greater at 0.5 h after feeding than after 1 h. Phosphorylation of mammalian target of rapamycin (mTOR) on Ser(2448) or Ser(2481), an upstream kinase responsible for phosphorylating both S6K1 and 4E-BP1, was increased at all times during meal feeding, although the extent of phosphorylation was greater at 0.5 h after feeding than after 1 h. Phosphorylation of PKB, an upstream kinase responsible for phosphorylating mTOR, was elevated only after 0.5 h of meal feeding for Thr(308), whereas phosphorylation Ser(473) was significantly elevated at only 0.5 and 1 h after initiation of feeding. We conclude from these studies that meal feeding stimulates two signal pathways in skeletal muscle that lead to elevated eIF4G.eIF4E complex assembly through increased phosphorylation of eIF4G and decreased association of 4E-BP1 with eIF4E.  相似文献   

11.
Phosphorylation of rabbit skeletal muscle glycogen synthase by a cyclic nucleotide and Ca2+-independent protein kinase, PC0.7, caused the enzyme to be a better substrate for phosphorylation by another cyclic nucleotide and Ca2+-independent protein kinase, FA/GSK-3. In contrast, phosphorylation by the combination of FA/GSK-3 and cyclic AMP-dependent protein kinase led to less phosphorylation than predicted from the individual actions of the protein kinases. These results are explained in part by the existence of cooperative interactions among the phosphorylation sites of glycogen synthase. Phosphorylation by FA/GSK-3 also correlated with a reduction in the electrophoretic mobility, in the presence of sodium dodecyl sulfate, of the glycogen synthase subunit from an apparent molecular weight of 85,000-86,000 to values of 88,000 and ultimately 90,000. The synergistic phosphorylation by PC0.7 and FA/GSK-3 was associated with an increased formation of the species of reduced electrophoretic mobility. The effects on subunit mobility were also reflected in the behavior of a larger phosphorylated CNBr fragment of glycogen synthase, CB-2, which gave apparent molecular weights of 22,000-27,000 depending on its phosphorylation state.  相似文献   

12.
Induction of sepsis in rats causes an inhibition of protein synthesis in skeletal muscle that is resistant to the stimulatory actions of insulin. To gain a better understanding of the underlying reason for this lack of response, the present study was undertaken to investigate sepsis-induced alterations in insulin signaling to regulatory components of mRNA translation. Experiments were performed in perfused hindlimb preparations from rats 5 days after induction of a septic abscess. Sepsis resulted in a 50% reduction in protein synthesis in the gastrocnemius. Protein synthesis in muscles from septic rats, but not controls, was unresponsive to stimulation by insulin. The insulin-induced hyperphosphorylation response of the translation repressor protein 4E-binding protein 1 (4E-BP1) and of the 70-kDa S6 kinase (S6K1) (1), two targets of insulin action on mRNA translation, was unimpaired in gastrocnemius of septic rats. Hyperphosphorylation of 4E-BP1 in response to insulin resulted in its dissociation from the inactive eukaryotic initiation factor (eIF)4E. 4E-BP1 complex in both control and septic rats. However, assembly of the active eIF4F complex as assessed by the association of eIF4E with eIF4G did not follow the pattern predicted by the increased availability of eIF4E resulting from changes in the phosphorylation of 4E-BP1. Indeed, sepsis caused a dramatic reduction in the amount of eIF4G associated with eIF4E in the presence or absence of insulin. Thus the inability of insulin to stimulate protein synthesis during sepsis may be related to a defect in signaling to a step in translation initiation involved in assembly of an active eIF4F complex.  相似文献   

13.
We investigated the effect of resistance exercise and feeding on the activation of signaling proteins involved in translation initiation. Nine young men (23.7+/-0.41 yr; BMI=25.5+/-1.0 kg/m2; means+/-SE) were tested twice after they performed a strenuous bout of unilateral resistance exercise, such that their contralateral leg acted as a nonexercised comparator, in either the fasted and fed [1,000 kJ, each 90 min (3 doses): 10 g protein, 41 g carbohydrate, 4 g fat] states. Muscle biopsies were obtained 6 h postexercise from both legs, resulting in four experimental conditions: rest-fasted, rest-fed, exercise-fasted, and exercise-fed. Feeding increased PKB/Akt (Ser473) phosphorylation (P<0.05), while exercise increased the phosphorylation of Akt and the downstream 70 kDa S6 protein kinase (p70S6K1, Thr389) and ribosomal protein S6 (rpS6, Ser235/236, Ser240/244; all P<0.05). The combination of resistance exercise and feeding increased the phosphorylation of p70S6K1 (Thr389) and rpS6 (Ser240/244) above exercise alone (P<0.05). Exercise also reduced phosphorylation of the catalytic epsilon subunit of eukaryotic initiation factor 2B (eIF2Bepsilon, Ser540; P<0.05). Mammalian target of rapamycin (mTOR, Ser2448), glycogen synthase kinase-3beta (GSK-3beta, Ser9), and focal adhesion kinase (FAK, Tyr576/577) phosphorylation were unaffected by either feeding or resistance exercise (all P>0.14). In summary, feeding resulted in phosphorylation of Akt, while resistance exercise stimulated phosphorylation of Akt, p70S6K1, rpS6, and dephosphorylation eIF2Bepsilon with a synergistic effect of feeding and exercise on p70(S6K1) and its downstream target rpS6. We conclude that resistance exercise potentiates the effect of feeding on the phosphorylation and presumably activation of critical proteins involved in the regulation of muscle protein synthesis in young men.  相似文献   

14.
High glucose (30 mM) and high insulin (1 nM), pathogenic factors of type 2 diabetes, increased mRNA expression and synthesis of lamininbeta1 and fibronectin after 24 h of incubation in kidney proximal tubular epithelial (MCT) cells. We tested the hypothesis that inactivation of glycogen synthase kinase 3beta (GSK3beta) by high glucose and high insulin induces increase in synthesis of laminin beta1 via activation of eIF2Bepsilon. Both high glucose and high insulin induced Ser-9 phosphorylation and inactivation of GSK3beta at 2 h that lasted for up to 48 h. This was associated with dephosphorylation of eIF2Bepsilon and eEF2, and increase in phosphorylation of 4E-BP1 and eIF4E. Expression of the kinase-dead mutant of GSK3beta or constitutively active kinase led to increased and diminished laminin beta1 synthesis, respectively. Incubation with selective kinase inhibitors showed that high glucose- and high insulin-induced laminin beta1 synthesis and phosphorylation of GSK3beta were dependent on PI 3-kinase, Erk, and mTOR. High glucose and high insulin augmented activation of Akt, Erk, and p70S6 kinase. Dominant negative Akt, but not dominant negative p70S6 kinase, inhibited GSK3beta phosphorylation induced by high glucose and high insulin, suggesting Akt but not p70S6 kinase was upstream of GSK3beta. Status of GSK3beta was examined in vivo in renal cortex of db/db mice with type 2 diabetes at 2 weeks and 2 months of diabetes. Diabetic mice showed increased phosphorylation of renal cortical GSK3beta and decreased phosphorylation of eIF2Bepsilon, which correlated with renal hypertrophy at 2 weeks, and increased laminin beta1 and fibronectin protein content at 2 months. GSK3beta and eIF2Bepsilon play a role in augmented protein synthesis associated with high glucose- and high insulin-stimulated hypertrophy and matrix accumulation in renal disease in type 2 diabetes.  相似文献   

15.
The phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling pathway is an important mediator of growth factor-dependent survival of mammalian cells. A variety of targets of the Akt protein kinase have been implicated in cell survival, including the protein kinase glycogen synthase kinase 3beta (GSK-3beta). One of the targets of GSK-3beta is translation initiation factor 2B (eIF2B), linking global regulation of protein synthesis to PI 3-kinase/Akt signaling. Because of the central role of protein synthesis, we have investigated the involvement of eIF2B, which is inhibited as a result of GSK-3beta phosphorylation, in programmed cell death. We demonstrate that expression of eIF2B mutants lacking the GSK-3beta phosphorylation or priming sites is sufficient to protect both Rat-1 and PC12 cells from apoptosis induced by overexpression of GSK-3beta, inhibition of PI 3-kinase, or growth factor deprivation. Consistent with these effects on cell survival, expression of nonphosphorylatable eIF2B prevented inhibition of protein synthesis following treatment of cells with the PI 3-kinase inhibitor LY294002. Conversely, cycloheximide induced apoptosis of PC12 and Rat-1 cells, further indicating that protein synthesis was required for cell survival. Inhibition of translation resulting from treatment with cycloheximide led to the release of cytochrome c from mitochondria, similar to the effects of inhibition of PI 3-kinase. Expression of nonphosphorylatable eIF2B prevented cytochrome c release resulting from PI 3-kinase inhibition but did not affect cytochrome c release or apoptosis induced by cycloheximide. Regulation of translation resulting from phosphorylation of eIF2B by GSK-3beta thus appears to contribute to the control of cell survival by the PI 3-kinase/Akt signaling pathway, acting upstream of mitochondrial cytochrome c release.  相似文献   

16.
Polymicrobial sepsis impairs skeletal muscle protein synthesis, which results from impairment in translation initiation under basal conditions. The purpose of the present study was to test the hypothesis that sepsis also impairs the anabolic response to amino acids, specifically leucine (Leu). Sepsis was induced by cecal ligation and puncture, and 24 h later, Leu or saline (Sal) was orally administered to septic and time-matched nonseptic rats. The gastrocnemius was removed 20 min later for assessment of protein synthesis and signaling components important in peptide-chain initiation. Oral Leu increased muscle protein synthesis in nonseptic rats. Leu was unable to increase protein synthesis in muscle from septic rats, and synthetic rates remained below those observed in nonseptic + Sal rats. In nonseptic + Leu rats, phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1) in muscle was markedly increased compared with values from time-matched Sal-treated nonseptic rats. This change was associated with redistribution of eIF4E from the inactive eIF4E.4E-BP1 to the active eIF4E.eIF4G complex. In septic rats, Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were completely abrogated. Sepsis also antagonized the Leu-induced increase in phosphorylation of S6 kinase 1 and ribosomal protein S6. Sepsis attenuated Leu-induced phosphorylation of mammalian target of rapamycin and eIF4G. The ability of sepsis to inhibit anabolic effects of Leu could not be attributed to differences in plasma concentrations of insulin, insulin-like growth factor I, or Leu between groups. In contrast, the ability of exogenous insulin-like growth factor I to stimulate the same signaling components pertaining to translation initiation was not impaired by sepsis. Hence, sepsis produces a relatively specific Leu resistance in skeletal muscle that impairs the ability of this amino acid to stimulate translation initiation and protein synthesis.  相似文献   

17.
In a previous study we demonstrated a requirement for activation of mTORC1 in the stimulation of eIF2Bepsilon mRNA translation in skeletal muscle in response to resistance exercise. Although that study established the necessity of mTORC1 activation, the experimental model used did not lend itself readily to address the question of whether or not mTORC1 activation was sufficient to produce the response. Therefore, the present study was designed to address the sufficiency of mTORC1 activation, using cultures of Rat2 fibroblasts in which mTORC1 signaling was repressed by serum/leucine-depletion and stimulated by repletion of leucine and/or IGF-1. Repletion with leucine and IGF-1 caused a shift of eIF2Bepsilon mRNA into actively translating polysomes and a stimulation of new eIF2Bepsilon protein synthesis, but had no effect on mRNAs encoding the other four eIF2B subunits. Stimulation of eIF2Bepsilon translation was reversed by pre-treatment with the mTORC1 inhibitor rapamycin. Exogenous overexpression of FLAG-Rheb, a proximal activator of mTORC1, also caused a re-distribution of eIF2Bepsilon mRNA into polysomes and a stimulation of eIF2Bepsilon protein synthesis. The stimulation of eIF2Bepsilon mRNA translation occurred in the absence of any effect on eIF2Bepsilon mRNA abundance. RNAi-mediated knockdown of eIF2Bepsilon resulted in reduced cellular proliferation, a result that phenocopied the known cytostatic effect of mTORC1 repression. Overall the results demonstrate that activation of mTORC1 is both necessary and sufficient to stimulate eIF2Bepsilon mRNA translation and that this response may represent a novel mechanism through which mTORC1 can affect mRNA translation initiation, rates of protein synthesis, and cellular growth/proliferation.  相似文献   

18.
The present study evaluated the ability of insulin-like growth factor I (IGF-I) complexed with IGF binding protein-3 (IGFBP-3) to modulate the sepsis-induced inhibition of protein synthesis in gastrocnemius. Beginning 16 h after the induction of sepsis, either the binary complex or saline was injected twice daily via a tail vein, with measurements made 3 and 5 days later. By day 3, sepsis had reduced plasma IGF-I concentrations approximately 50% in saline-treated rats. Administration of the binary complex provided exogenous IGF-I to compensate for the sepsis-induced diminished plasma IGF-I. Sepsis decreased rates of protein synthesis in gastrocnemius relative to controls by limiting translational efficiency. Treatment of septic rats with the binary complex for 5 days attenuated the sepsis-induced inhibition of protein synthesis and restored translational efficiency to control values. Assessment of potential mechanisms regulating translational efficiency showed that neither the sepsis-induced change in gastrocnemius content of eukaryotic initiation factor 2B (eIF2B), the amount of eIF4E associated with 4E binding protein-1 (4E-BP1), nor the phosphorylation state of 4E-BP1 or eIF4E were altered by the binary complex. Overall, the results are consistent with the hypothesis that decreases in plasma IGF-I are partially responsible for enhanced muscle catabolism during sepsis.  相似文献   

19.
Unilateral denervation (DNV) of rat diaphragm muscle increases protein synthesis at 3 days after DNV (DNV-3D) and degradation at DNV-5D, such that net protein breakdown is evident by DNV-5D. On the basis of existing models of protein balance, we examined DNV-induced changes in Akt, AMP-activated protein kinase (AMPK), and ERK½ activation, which can lead to increased protein synthesis via mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K), glycogen synthase kinase-3β (GSK3β), or eukaryotic initiation factor 4E (eIF4E), and increased protein degradation via forkhead box protein O (FoxO). Protein phosphorylation was measured using Western analyses through DNV-5D. Akt phosphorylation decreased at 1 h and 6 h after DNV compared with sham despite decreased AMPK phosphorylation. Both Akt and AMPK phosphorylation returned to sham levels by DNV-1D. Phosphorylation of their downstream effector mTOR (Ser2481) did not change at any time point after DNV, and phosphorylated p70S6K and eIF4E-binding protein 1 (4EBP1) increased only by DNV-5D. In contrast, ERK½ phosphorylation and its downstream effector eIF4E increased 1.7-fold at DNV-1D and phosphorylated GSK3β increased 1.5-fold at DNV-3D (P < 0.05 for both comparisons). Thus, following DNV there are differential effects on protein synthetic pathways with preferential activation of GSK3β and eIF4E over p70S6K. FoxO1 nuclear translocation occurred by DNV-1D, consistent with its role in increasing expression of atrogenes necessary for subsequent ubiquitin-proteasome activation evident by DNV-5D. On the basis of our results, increased protein synthesis following DNV is associated with changes in ERK½-dependent pathways, but protein degradation results from downregulation of Akt and nuclear translocation of FoxO1. No single trigger is responsible for protein balance following DNV. Protein balance in skeletal muscle depends on multiple synthetic/degradation pathways that should be studied in concert.  相似文献   

20.
The rapid gain in skeletal muscle mass in the neonate is associated with a marked elevation in skeletal muscle protein synthesis in response to feeding. The feeding-induced response decreases with development. To determine whether the response to feeding is regulated at the level of translation initiation, the expression, phosphorylation, and function of a number of eukaryotic initiation factors (eIF) were examined. Pigs at 7 and 26 days of age were either fasted overnight or fed porcine milk after an overnight fast. In muscle of 7-day-old pigs, the hyperphosphorylated form of the eIF4E repressor protein, 4E-binding protein 1 (4E-BP1), was undetectable in the fasting state but rose to 60% of total 4E-BP1 after feeding; eIF4E phosphorylation was unaffected by feeding status. The amount of eIF4E in the inactive 4E-BP1. eIF4E complex was reduced by 80%, and the amount of eIF4E in the active eIF4E. eIF4G complex was increased 14-fold in muscle of 7-day-old pigs after feeding. The amount of 70-kDa ribosomal protein S6 (p70(S6)) kinase in the hyperphosphorylated form rose 2.5-fold in muscle of 7-day-old pigs after feeding. Each of these feeding-induced responses was blunted in muscle of 26-day-old pigs. eIF2B activity in muscle was unaffected by feeding status but decreased with development. Feeding produced similar changes in eIF characteristics in liver and muscle; however, the developmental changes in liver were not as apparent as in skeletal muscle. Thus the results demonstrate that the developmental change in the acute stimulation of skeletal muscle protein synthesis by feeding is regulated by the availability of eIF4E for 48S ribosomal complex formation. The results further suggest that the overall developmental decline in skeletal muscle protein synthesis involves regulation by eIF2B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号