首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Plasticity in canine airway smooth muscle   总被引:4,自引:0,他引:4       下载免费PDF全文
The large volume changes of some hollow viscera require a greater length range for the smooth muscle of their walls than can be accommodated by a fixed array of sliding filaments. A possible explanation is that smooth muscles adapt to length changes by forming variable numbers of contractile units in series. To test for such plasticity we examined the muscle length dependence of shortening velocity and compliance, both of which will vary directly with the number of thick filaments in series. Dog tracheal smooth muscle was studied because its cells are arrayed in long, straight, parallel bundles that span the length of the preparation. In experiments where muscle length was changed, both compliance and velocity showed a strong dependence on muscle length, varying by 1.7-fold and 2.2-fold, respectively, over a threefold range of length. The variation in isometric force was substantially less, ranging from a 1.2- to 1.3-fold in two series of experiments where length was varied by twofold to an insignificant 4% variation in a third series where a threefold length range was studied. Tetanic force was below its steady level after both stretches and releases, and increased to a steady level with 5-6 tetani at 5 min intervals. These results suggest strongly that the number of contractile units in series varies directly with the adapted muscle length. Temporary force depression after a length change would occur if the change transiently moved the filaments from their optimum overlap. The relative length independence of the adapted force is explained by the reforming of the filament lattice to produce optimum force development, with commensurate changes of velocity and compliance.  相似文献   

2.
Relaxation of canine airway smooth muscle   总被引:1,自引:0,他引:1  
Relaxation of airway smooth muscle is an inadequately understood yet critical process that, if impaired, may have significant implications for asthma. Here we explore why relaxation is an important process to consider, how it may determine airway hyperresponsiveness, and some of the factors that influence relaxation of the airway smooth muscle. These include mechanical and biochemical factors such as deep inspirations or large amplitude oscillation of the muscle, plastic properties of the muscle, the load the muscle experiences, calcium, phosphorylation of the myosin light chain, cytoskeletal proteins, and sensitization.  相似文献   

3.
4.
Caveolae are specialized membrane microdomains expressing the scaffolding protein caveolin-1. We recently demonstrated the presence of caveolae in human airway smooth muscle (ASM) and the contribution of caveolin-1 to intracellular calcium ([Ca(2+)](i)) regulation. In the present study, we tested the hypothesis that caveolin-1 regulates ASM contractility. We examined the role of caveolins in force regulation of porcine ASM under control conditions as well as TNF-α-induced airway inflammation. In porcine ASM strips, exposure to 10 mM methyl-β-cyclodextrin (CD) or 5 μM of the caveolin-1 specific scaffolding domain inhibitor peptide (CSD) resulted in time-dependent decrease in force responses to 1 μM ACh. Overnight exposure to the cytokine TNF-α (50 ng/ml) accelerated and increased caveolin-1 expression and enhanced force responses to ACh. Suppression of caveolin-1 with small interfering RNA mimicked the effects of CD or CSD. Regarding mechanisms by which caveolae contribute to contractile changes, inhibition of MAP kinase with 10 μM PD98059 did not alter control or TNF-α-induced increases in force responses to ACh. However, inhibiting RhoA with 100 μM fasudil or 10 μM Y27632 resulted in significant decreases in force responses, with lesser effects in TNF-α exposed samples. Furthermore, Ca(2+) sensitivity for force generation was substantially reduced by fasudil or Y27632, an effect even more enhanced in the absence of caveolin-1 signaling. Overall, these results indicate that caveolin-1 is a critical player in enhanced ASM contractility with airway inflammation.  相似文献   

5.
Isoprostanes are marker of lipid peroxidation and are produced after free-radical attack of membrane lipids. In addition, they are biologically active and are essentially vaso- and broncho-constrictor. Their smooth muscle constrictor actions are closely linked to the activation of the thromboxane A(2) receptor, but also involve a distinct receptor not yet identified. The response of vascular smooth muscle to isoprostanes is subclass-specific (F-series versus E-series isoprostanes) and cell- and species-related. In this review, we will address the vascular actions of isoprostanes and their possible role in vascular physiology and pathophysiology.  相似文献   

6.
Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 microM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 microM). Genistein and tyrphostin 23 (40 and 10 microM, respectively) significantly decreased 5-HT-evoked peak Ca(2+) responses, and the effect of genistein could be observed in the absence of extracellular Ca(2+). The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 microM) had no significant effect on peak Ca(2+) levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of approximately 70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the gamma isoform of phospholipase C (PLC-gamma). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 microM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-beta activity. It is unlikely that PLC-gamma or the mitogen-activated protein kinase pathway is involved in Ca(2+) signaling to 5-HT.  相似文献   

7.
Autonomic response characteristics of porcine airway smooth muscle in vivo   总被引:1,自引:0,他引:1  
We studied the autonomic response characteristics of airways in 65 swine in vivo. Tracheal smooth muscle response was measured isometrically in situ; bronchial response was measured simultaneously as change in airway resistance and dynamic compliance. To determine the optimal resting length at which maximal tracheal contraction was obtained, length-tension studies were generated in four animals using maximal electrical stimulation of the vagus nerves determined from stimulus-response characteristics in eight other swine. Pharmacological studies were performed in 25 animals to determine the relative potency and intrinsic activity of agonists (acetylcholine greater than histamine much greater than norepinephrine) causing contraction of trachea and bronchial airways. In 13 swine, the effects of autonomic stimulation were studied by intravenous administration of dimethylphenylpiperazinium (DMPP) after muscarinic blockade with 1.5 mg/kg iv atropine. Tracheal contraction caused by topical application of 3.4 X 10(-4) mol histamine (13.4 +/- 1.54 g/cm) was 96 +/- 7.2% blocked by 25 micrograms/kg iv DMPP in adrenal-intact animals; minimal relaxation was demonstrated in adrenalectomized animals, indicating absence of substantial sympathetic innervation to porcine trachea. Nonadrenergic innervation was not demonstrated. After beta-adrenergic blockade, sympathetic stimulation caused alpha-adrenergic contraction in bronchial airways but not in trachea. These data define the unique response characteristics of the airways of swine and demonstrate their utility for acute experimental study of airway responses in vivo.  相似文献   

8.
9.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

10.
11.
12.
To determine whether prostaglandin D2 (PGD2) modulates cholinergic neurotransmission in airway smooth muscle and, if so, what the mechanism of action is, we studied bronchial segments from dogs under isometric conditions in vitro. PGD2 (10(-8)-10(-5) M) elicited dose-dependent muscle contraction, which was reduced after blockade of muscarinic receptors, so that 50% effective dose (ED50) increased from 1.3 +/- 0.3 X 10(-6) to 3.9 +/- 1.0 X 10(-6) M by atropine (10(-6) M) (mean +/- SE, P less than 0.05). Physostigmine, at a concentration insufficient to alter base-line tension (10(-8) M), enhanced the PGD2-induced contraction and decreased ED50 to 6.4 +/- 0.5 X 10(-7) M (P less than 0.05). When added at the highest doses that did not cause spontaneous contraction (1.9 +/- 0.5 X 10(-7) M), PGD2 increased the contractile response to electrical field stimulation (1-50 Hz) by 21.9 +/- 6.6% (P less than 0.001). In contrast to this effect, the response to administered acetylcholine was not affected by PGD2. On the other hand, PGD2-induced augmentation of the response to electrical field stimulation (5 Hz) was further increased from 23.6 +/- 3.0 to 70.4 +/- 8.8% in the presence of physostigmine (10(-8) M) and was abolished by atropine but not affected by the alpha-adrenergic antagonist phentolamine or the histamine H1-blocker pyrilamine. These results suggest that the contraction of airway smooth muscle induced by PGD2 is in in part mediated by a cholinergic action and that PGD2 prejunctionally augments the parasympathetic contractile response, likely involving the accelerated release of acetylcholine at the neuromuscular junction.  相似文献   

13.
The single-channel patch clamp technique was used to analyze subconductance states in the 260 pS calcium-activated potassium channel from canine airway smooth muscle. More than sixty minutes of single channel data (greater than 87,000 events) from five excised patches were analyzed. Six subconductance amplitudes were clearly established to be 17, 33, 41, 52, 63 and 72% of the full conductance. Subconductance openings were usually brief (milliseconds) and represented less than 5% of the total channel open time, but they also persisted for several seconds on rare occasions. They appeared to be unaffected by voltage or time after seal formation, but may have increased in occurrence with decreasing calcium concentration. Irregular amplitude intervals, and the presence of ramp-like, analog transitions between conductance states, suggest a model for maxi-K subconductance states in which the channel protein undergoes random conformational changes causing a variable pore size.  相似文献   

14.
The full functional length range of trachealis muscle was measured to identify a precise reference length and to assess the length changes that the myofilament lattice can accommodate. The initial reference length (L(10%)) was that where rest tension equaled 10% of total force (passive tension plus active force). Total force at this length served as a force reference (F(ref) = 219 +/- 12 kPa, N = 7). Muscles initially adapted at L(10%) for 30-60 min had no rest tension when shortened to <0.9 L(10%). Passive tension rose steeply and linearly with slope 11.2 F(ref)/L(10%) at lengths >1.04 L(10%). Rest tension at 1.1 L(10%) declined by <10% over 1 h. The steep slope and stability of rest tension at long lengths suggest that a parameter of the slope could serve as a precise, reproducible reference length. Active force was nearly constant at lengths 0.33-1.0 L(10%) and declined steeply at lengths between 0.1 and 0.2 L(10%), extrapolating to zero at 0.076 L(10%). Muscles visibly reextended during relaxation at lengths <0.25 L(10%). At long lengths, force extrapolated to zero at 1.175 L(10%). The >15-fold length range (0.076-1.175 L(10%)) for force generation and nearly constant force over a greater than threefold length range is likely produced by several structural accommodations, including filament sliding, an increased number of sliding filaments in series, and increased length of passive structures in series with the sliding filaments. Visible reextension during relaxation suggests that the lattice does not undergo plastic adaptations at lengths <25% L(10%) and that lattice plasticity is limited to a three- to fourfold length range.  相似文献   

15.
Inbred Fischer 344 rats display airway hyperresponsiveness (AHR) in vivo compared with the normoresponsive Lewis strain. Fischer AHR has been linked with increased airway smooth muscle (ASM) contraction ex vivo and enhanced ASM cell intracellular Ca(2+) mobilization in response to serotonin compared with Lewis. To determine the generality of this association, we tested whether bradykinin (BK) also stimulates greater contraction of Fischer airways and greater Ca(2+) mobilization in Fischer ASM cells. Explants of Fischer intraparenchymal airways constricted faster and to a greater degree in response to BK than Lewis airways. BK also evoked higher Ca(2+) transients in Fischer than in Lewis ASM cells. ASM cell B(2) receptor expression was similar between the two strains. BK activated both phosphatidylinositide-specific phospholipase C (PI-PLC) and phosphatidylcholine-specific PLC to mobilize Ca(2+) in Fischer and Lewis ASM cells. PI-PLC activity, as measured by inositol polyphosphate accumulation, was similar in the two strains. PKC inhibition with GF109203X, Go6973, or Go6983 attenuated BK-mediated Ca(2+) transients in Fischer cells, whereas GF109203X potentiated while Go6976 and Go6983 did not affect Ca(2+) transients in Lewis cells. Enhanced Ca(2+) mobilization in ASM cells can arise from variations in PKC and may be an important component of nonspecific, innate AHR.  相似文献   

16.
17.
Prakash, Y. S., H. F. M. van der Heijden, M. S. Kannan, andG. C. Sieck. Effects of salbutamol on intracellular calcium oscillations in porcine airway smooth muscle. J. Appl.Physiol. 82(6): 1836-1843, 1997.Relaxation ofairway smooth muscle (ASM) by -adrenoceptor agonists involvesreduction of intracellular Ca2+concentration([Ca2+]i).In porcine ASM cells, acetylcholine induces[Ca2+]ioscillations that display frequency modulation by agonist concentration and basal[Ca2+]i.We used real-time confocal microscopy to examine the effect ofsalbutamol (1 nM to 1 µM), a2-adrenoceptor agonist, on[Ca2+]ioscillations in freshly dissociated porcine ASM cells. Salbutamol decreased the frequency of[Ca2+]ioscillations in a concentration-dependent fashion, completely inhibiting the oscillations at 1 µM. These effects were mimicked by acell-permeant analog of adenosine 3,5-cyclicmonophosphate. The inhibitory effect of salbutamol was partiallyreversed by BAY K 8644. Salbutamol reduced[Ca2+]ieven when sarcoplasmic reticulum (SR)Ca2+ reuptake andCa2+ influx were blocked.Lanthanum blockade of Ca2+ effluxattenuated the inhibitory effect of salbutamol on[Ca2+]i.The[Ca2+]iresponse to caffeine was unaffected by salbutamol. On the basis ofthese results, we conclude that2-adrenoceptor agonists have little effect on SR Ca2+ releasein ASM cells but reduce[Ca2+]iby inhibiting Ca2+ influx throughvoltage-gated channels and by enhancingCa2+ efflux.

  相似文献   

18.
19.
Although the structure of the contractile unit in smooth muscle is poorly understood, some of the mechanical properties of the muscle suggest that a sliding-filament mechanism, similar to that in striated muscle, is also operative in smooth muscle. To test the applicability of this mechanism to smooth muscle function, we have constructed a mathematical model based on a hypothetical structure of the smooth muscle contractile unit: a side-polar myosin filament sandwiched by actin filaments, each attached to the equivalent of a Z disk. Model prediction of isotonic shortening as a function of time was compared with data from experiments using ovine tracheal smooth muscle. After equilibration and establishment of in situ length, the muscle was stimulated with ACh (100 μM) until force reached a plateau. The muscle was then allowed to shorten isotonically against various loads. From the experimental records, length-force and force-velocity relationships were obtained. Integration of the hyperbolic force-velocity relationship and the linear length-force relationship yielded an exponential function that approximated the time course of isotonic shortening generated by the modeled sliding-filament mechanism. However, to obtain an accurate fit, it was necessary to incorporate a viscoelastic element in series with the sliding-filament mechanism. The results suggest that a large portion of the shortening is due to filament sliding associated with muscle activation and that a small portion is due to continued deformation associated with an element that shows viscoelastic or power-law creep after a step change in force.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号