首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neonatal exposure to hyperoxia alters lung development in mice. We tested if retinoic acid (RA) treatment is capable to affect lung development after hyperoxic injury and to maintain structural integrity of lung. The gene of vascular endothelial growth factor A (VEGF-A) is one of the RA-responsive genes. Newborn BALB/c mice were exposed to room air, 40 % or 80 % hyperoxia for 7 days. One half of animals in each group received 500 mg/kg retinoic acid from day 3 to day 7 of the experiment. At the end of experiment we assessed body weight (BW), lung wet weight (LW), the wet-to-dry lung weight ratio (W/D) and the expression of mRNA for VEGF-A and G3PDH genes. On day 7 the hyperoxia-exposed sham-treated mice (group 80) weighed 20 % less than the room air-exposed group, whereas the 80 % hyperoxic group treated with RA weighed only 13 % less than the normoxic group. W/D values in 80 and 80A groups did not differ, although they both differed from the control group and from 40 groups. There was a significant difference between 40 and 40A groups, but the control group was different from 40 group but not from 40A groups. The 80 and 80A groups had mRNA VEGF-A expression lowered to 64 % and 41 % of the control group. RA treatment of normoxic and mild hyperoxic groups increased mRNA VEGF-A expression by about 50 %. We conclude that the retinoic acid treatment of newborn BALB/c mice exposed for 7 days to 80 % hyperoxia reduced the growth retardation in the 80 % hyperoxic group, reduced the W/D ratio in the 40 % but not in the 80 % hyperoxic group. Higher VEGF-A mRNA expression in the 80 % hyperoxic group treated with RA was not significant compared to the 80 % hyperoxic group.  相似文献   

2.
Retinoic acid is the active vitamin A derivative and is well-known to have diverse immunomodulatory actions. In this study, we investigated the impact of all-trans retinoic acid (ATRA), a biologic key metabolite of vitamin A, on the development of arthritis and the pathophysiologic mechanisms by which ATRA might have antiarthritic effects in animal model of rheumatoid arthritis (RA; collagen-induced arthritis [CIA] in DBA/1J mice). We showed that treatment with ATRA markedly suppressed the clinical and histologic signs of arthritis in the CIA mice. It reduced the expression of IL-17 in the arthritic joints. Interestingly, Foxp3(+) regulatory T cells were markedly increased and IL-17-producing CD4(+) T cells (Th17 cells) were decreased in the spleens of ATRA-treated mice. In vitro treatment with ATRA induced the expression of Foxp3 and repressed the IL-17 expression in the CD4(+) T cells in mice. ATRA suppressed the production of total IgG and IgG2a in splenocytes that were stimulated by LPS. It also reduced serum levels of total IgG and IgG2 anti-collagen Abs and germinal center formation in CIA mice. In addition, the ATRA-treated mice showed decreased osteoclast formation in arthritic joints. Moreover, ATRA downregulated the expression of receptor activator of NF-κB ligand, the leading player of osteoclastogenesis, in the CD4(+) T cells and fibroblast-like synoviocytes from patients with RA. Furthermore, ATRA prevented both human monocytes and mice bone marrow-derived monocytes/macrophage cells from differentiating into osteoclasts. These data suggest ATRA might be an effective treatment modality for RA patients.  相似文献   

3.
Pulmonary alveoli are formed in part by subdivision (septation) of the gas-exchange saccules of the immature lung. Septation results in smaller, more numerous structures (alveoli) and is developmentally regulated in mammals including humans, rats, and mice; if it fails to occur at the appropriate time, there is no spontaneous post hoc septation nor has there been a means of inducing septation after it has failed to occur. We measured lung volume, the volume of individual alveoli, and alveolar surface area and calculated alveolar number in neonatal rats in which septation had been blocked by treatment with a glucocorticosteroid hormone and in adult tight-skin mice that have a genetic failure of septation. We tested the hypothesis that treatment with all-trans retinoic acid induces post hoc septation. In both models of failed septation, hence in two species, and in immature and adult animals, treatment with all-trans retinoic acid induced post hoc septation, offering the possibility of a similar effect in premature infants.  相似文献   

4.
Reactive oxygen species including H2O2 lead vascular endothelial cells (EC) to undergo apoptosis. Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid mediator that elicits various EC responses. We aimed to explore whether and how S1P modulates EC apoptosis induced by H2O2. Treatment of cultured bovine aortic EC (BAEC) with H2O2 (750 μM for 6 h) led to DNA fragmentation (ELISA), DNA nick formation (TUNEL staining), and cleavage of caspase-3, key features of EC apoptosis. These responses elicited by H2O2 were alike markedly attenuated by pretreatment with S1P (1 μM, 30 min). H2O2 induced robust phosphorylation of both p38 and JNK MAP kinases. However, pretreatment with S1P decreased phosphorylation of only p38 MAP kinase, but not that of JNK; conversely, an inhibitor of p38 MAP kinase, but not that of JNK, attenuated H2O2-induced caspase-3 activation. Thus S1P attenuates H2O2-induced apoptosis of cultured BAEC, involving p38 MAP kinase.  相似文献   

5.
Retinoic acid inhibition of transplasmalemma diferric transferrin reductase   总被引:1,自引:0,他引:1  
All trans retinoic acid inhibited diferric transferrin reduction by HeLa cells. The NADH diferric transferrin reductase activity of isolated liver plasma membranes was also inhibited by retinoic acid. Retinol and retinyl acetate had very little effect. Transplasma membrane ferricyanide reduction by HeLa cells and NADH ferricyanide reductase of liver plasma membrane was also inhibited by retinoic acid, therefore the inhibition was in the electron transport system and not at the transferrin receptor. Since the transmembrane electron transport has been shown to stimulate cell growth, the growth inhibition by retinoic acid thus may be based on inhibition of the NADH diferric transferrin reductase.  相似文献   

6.
Nitric oxide (.NO) attenuates hydrogen peroxide (H(2)O(2))-mediated injury in porcine pulmonary artery endothelial cells (PAECs) and modulates intracellular levels of cGMP and cAMP. We hypothesized that.NO attenuates H(2)O(2)-induced PAEC monolayer barrier dysfunction through cyclic nucleotide-dependent signaling mechanisms. To examine this hypothesis, cultured PAEC monolayers were treated with H(2)O(2), and barrier function was measured as transmonolayer albumin clearance. H(2)O(2) caused significant PAEC barrier dysfunction that was attenuated by intracellular as well as extracellular.NO generation.NO increased PAEC cGMP and cAMP levels, but treatment with inhibitors of soluble guanylate cyclase or protein kinase G did not abrogate.NO-mediated barrier protection. In contrast, H(2)O(2) decreased protein kinase A activity, and inhibiting protein kinase A abrogated the protective effect of.NO. H(2)O(2)-induced barrier dysfunction was not associated with decreased levels of cGMP or cAMP. 3-Isobutyl-1-methylxanthine and the cGMP analog 8-bromo-cGMP had little effect on H(2)O(2)-mediated endothelial barrier dysfunction, whereas 8-bromo-cAMP plus 3-isobutyl-1-methylxanthine was protective. These results indicate that.NO modulates vascular endothelial barrier function through cAMP-dependent signaling mechanisms.  相似文献   

7.
Retinoic acid and CO2 laser resurfacing   总被引:2,自引:0,他引:2  
McDonald WS  Beasley D  Jones C 《Plastic and reconstructive surgery》1999,104(7):2229-35; discussion 2236-8
The purpose of this study was to analyze the effect of retinoic acid on wound healing and depth of injury in an animal skin model resurfaced with a CO2 laser. The dorsal skin of 21 Hartley guinea pigs was divided into halves. One-half received a daily application of 0.05% retinoic acid for 28 days, whereas the other half served as the control. The animals were divided into three treatment groups of seven animals. Group A was laser resurfaced with one pass of the Coherent UltraPulse CO2 laser (300 mJ, 60 W, density 40 percent). Group B received two passes, and group C received three passes. Histologic studies were obtained before laser resurfacing and days 1, 4, and 7 after resurfacing. Depth of injury, thickness, number of squamous cell and granular cell layers, and epithelialization rates were measured. We found that the depth of injury was statistically less in animals pretreated with retinoic acid. Granular cells were thicker and more numerous at day 4 in pretreated animals but similar to controls by day 7. Animals pre-treated with retinoic acid overall seemed to heal wounds earlier. In conclusion, pretreatment with retinoic acid may reduce the depth of injury in laser resurfacing and speed healing rates.  相似文献   

8.

Background

Low survival rate of transplanted cells compromises the efficacy of cell therapy. Hexokinase II (HKII) is known to have anti-apoptotic activity through its interaction with mitochondria. The objective was to identify miRNAs targeting HKII and investigate whether miRNA-mediated modulation of HKII could improve the survival of mesenchymal stem cells (MSCs) exposed to H2O2. The expression of HKII in MSCs exposed to H2O2 was evaluated, and HKII-targeting miRNA was screened based on miRNA-target prediction databases. The effect of H2O2 on the expression of the selected HKII-targeting miRNA was examined and the effect of modulation of the selected HKII-targeting miRNA using anti-miRNA on H2O2-induced apoptosis of MSC was evaluated.

Results

H2O2 (600 μM) induced cell death of MSCs and decreased mitochondrial HKII expression. We have identified miR-181a as a HKII-targeting miRNA and H2O2 increased the expression of miR-181a in MSCs. Delivery of anti-miR-181a, which neutralizes endogenous miR-181a, significantly attenuated H2O2-induced decrease of HKII expression and disruption of mitochondrial membrane potential, improving the survival of MSCs exposed to H2O2.

Conclusions

These findings suggest that H2O2-induced up-regulation of miR-181a contributes to the cell death of MSCs by down-regulating HKII. Neutralizing miR-181a can be an effective way to prime MSCs for transplantation into ischemic tissues.  相似文献   

9.
10.
Zeng S  Yang Y  Tan Y  Lu C  Pan Y  Chen L  Lu G 《Molecular biology reports》2012,39(8):7911-7917
ERBB2/HER2/NEU, a member of the epidermal growth factor receptor family, is overexpressed in more than 25 % of non-small cell lung cancer and is considered to be a significant and independent prognostic factor in lung cancer. Here we generated a lung specific HER2 overexpressing transgenic mouse model. In this model, HER2 was driven by the human surfactant protein-C promoter to investigate the role of the HER2 oncogene in pulmonary carcinogenesis and progression. Notably, significant pathological changes, including lymphocyte infiltration and mesenchymal cells hyperplasia, were found in the lung tissue of transgenic mice aged from 4 to 12 months. The occurrence and severity of those lesions increased as the mice aged. Some inflammatory factors, such as tumor necrosis factor, interleukin 1 and interleukin 6, were upregulated in lung tissue of transgenic mice compared with that of wild-type mice, implying that long-term HER2 overexpression could induce serious lung inflammation and some precancerous lesions. This model would be useful for studying the mechanism of HER2 involvement in lung carcinogenesis and for understanding the relationship between carcinogenesis and inflammation.  相似文献   

11.
12.
Reactive oxygen species (ROS) can cause cell injury and death via mitochondrial-dependent pathways, and supplementation with antioxidants has been shown to ameliorate these processes. The c-Jun NH(2)-terminal kinase (JNK) pathway has been shown to play a critical role in ROS-induced cell death. To determine if targeting catalase (CAT) to the mitochondria provides better protection than cytosolic expression against H(2)O(2)-induced injury, the following two approaches were taken: 1) adenoviral-mediated transduction was performed using cytosolic (CCAT) or mitochondrial (MCAT) CAT cDNAs and 2) stable cell lines were generated overexpressing CAT in mitochondria (n = 3). Cells were exposed to 250 microM H(2)O(2), and cell survival, mitochondrial function, cytochrome c release, and JNK activity were analyzed. Although all viral transduced cells had a transient twofold increase in CAT activity, MCAT cells had significantly higher survival rates, the best mitochondrial function, and lowest JNK activity compared with CCAT and LacZ controls. The improved protection with MCAT was observed in primary type II lung epithelial cells and in transformed lung epithelial cells. In the three stable cell lines, cell survival directly correlated with extent of mitochondrial localization (r = 0.60572, P < 0.05) and not overall CAT activity (r = -0.45501, P < 0.05). Data indicate that targeting of antioxidants directly to the mitochondria is more effective in protecting lung epithelial cells against ROS-induced injury. This has important implications in antioxidant supplementation trials to prevent ROS-induced lung injury in critically ill patients.  相似文献   

13.
Early determinants of H2O2-induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Reactive oxygen species (ROS) can stimulate nitric oxide (NO(*)) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO(*) production is reduced, however. We investigated the early determinants of this decrease in NO(*) production. Following an initial H(2)O(2) exposure, endothelial cells responded by increasing NO(*) production measured electrochemically. NO(*) concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO(*) at 30 min was associated with a 2.7-fold increase in O(2)(*-) production (p < 0.05) and a 14-fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH(4), p < 0.05). Used as a probe for endothelial dysfunction, the integrated NO(*) production over 30 min upon repeated H(2)O(2) exposure was attenuated by 2.1-fold (p = 0.03). Endothelial dysfunction could be prevented by BH(4) cofactor supplementation, by scavenging O(2)(*-) or peroxynitrite (ONOO(-)), or by inhibiting the NADPH oxidase. Hydroxyl radical (()OH) scavenging did not have an effect. In summary, early H(2)O(2)-induced endothelial dysfunction was associated with a decreased BH(4) level and increased O(2)(*-) production. Dysfunction required O(2)(*-), ONOO(-), or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction.  相似文献   

14.
15.
Tian XF  Zhang XS  Li YH  Wang ZZ  Zhang F  Wang LM  Yao JH 《Life sciences》2006,79(22):2069-2076
The aim of this study is to investigate the role of proteasome in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R) by examining the effect of the proteasome inhibitor lactacystin on neutrophil infiltration, intracellular adhesion molecule-1 (ICAM-1) expression and nuclear factor kappa B (NF-κB) activation. Thirty-two Wistar rats were divided into (1) control, (2) intestinal I/R, (3) 0.2 mg/kg lactacystin pretreated, and (4) 0.6 mg/kg lactacystin pretreated groups (n = 8). Injuries in lung and intestine were induced by intestinal I/R, and were characterized by histological edema, hemorrhage and infiltration of inflammatory cells. The results showed a significant increase in serum creatine kinase B (CK-B) and lung water content in intestine and lung injuries. As compared with the control group, the myeloperoxidase (MPO) activity in intestine and lung as well as the serum TNF-α level increased significantly in intestinal I/R group. Simultaneously, expression of ICAM-1 and NF-κB p65 was also observed in the I/R group. Pre-treatment with lactacystin markedly reduced 20S proteasome activity in circulating white blood cells and ameliorated intestine and lung injuries. These results demonstrated that the proteasome participates in the pathogenesis of lung injury induced by intestinal I/R. Lactacystin as a proteasome inhibitor can prevent this kind of injury by decreasing ICAM-1 and TNF-α production via the inhibition of NF-κB activation.  相似文献   

16.
It is well established that the proto-oncogene, bcl-2, can prevent apoptosis induced by a variety of factors. Regarding the mechanism by which BCL-2 prevents cell death, one theory suggests that it acts by protecting cells from oxidative stress. In the lens system, oxidative stress-induced apoptosis is implicated in cataractogenesis. To explore the possibility of anti-apoptotic gene therapy development for cataract prevention and also to further test the anti-oxidative stress theory of BCL-2 action, we have introduced the human bcl-2 gene into an immortalized rabbit lens epithelial cell line, N/N1003A. The stable expression clones of both vector- and bcl-2-transfected cells have been established. Treatment of the two cell lines with H(2)O(2) revealed that bcl-2-transfected cells were less capable of detoxifying H(2)O(2) than the control cells. Moreover, bcl-2-transfected cells are more susceptible to H(2)O(2)-induced apoptosis. To explore why bcl-2-transfected cells have reduced resistance to H(2)O(2)-induced apoptosis, we examined the expression patterns of several relevant genes and found that expression of the alphaB-crystallin gene was distinctly down-regulated in bcl-2-transfected cells compared with that in vector-transfected cells. This down-regulation was specific because a substantial inhibition of BCL-2 expression through antisense bcl-2 RNA significantly restored the level of alphaB-crystallin and, moreover, enhanced the ability of the bcl-2-transfected cells against H(2)O(2)-induced apoptosis. Introduction of a mouse alphaB-crystallin gene into bcl-2-transfected cells also counteracted the BCL-2 effects. Down-regulation of alphaB-crystallin gene was largely derived from changed lens epithelial cell-derived growth factor activity. Besides, alphaB-crystallin prevents apoptosis through interaction with procaspase-3 and partially processed procaspase-3 to prevent caspase-3 activation. Together, our results reveal that BCL-2 can regulate gene expression in rabbit lens epithelial cells. Through down-regulation of the alphaB-crystallin gene, BCL-2 attenuates the ability of rabbit lens epithelial cells against H(2)O(2)-induced apoptosis.  相似文献   

17.
Degradation of uracil-containing DNA by Bacillus subtilis extracts and its inhibition after infection by the uracil-containing DNA phage PBS2 have been investigated to resolve differences between the published reports of Tomita and Takahashi (1975) and Friedberg et al. (1975, 1976). The product of hydrolysis of PBS2 DNA, tritium labeled in its uracil and cytosine residues, is solely uracil and not deoxyuridine. The degrading activity is completely inhibited within 7 min after PBS2 infection, before any other known PBS2-induced protein is detectable. The production of the PBS2 inhibitor (a small, heat-stable protein) continues until 10 to 20 min postinfection.  相似文献   

18.
Retinoic acid (RA) is an important coordinator of mammalian organogenesis. RA is implicated in critical lung developmental events. Cell proliferation is precisely regulated during development. We investigated the effect of RA on proliferating mesenchymal cells in both whole organ lung cultures and cell cultures. The potential pathways required for the response were studied in cultures of lung mesenchymal cells from embryonic day (e) 12. We observed an RA-dependent reduction in proliferation of mesenchymal cells in both whole organ and in cell culture. In mesenchymal cell cultures, RA decreased proliferation in lung mesenchymal cells by 72%. This was associated with a decrease of erk-1/2 activity by 68%. Mesenchymal cell proliferation is erk-1/2 dependent. Erk-1/2 can be activated by G-protein coupled receptors (GPCR) or tyrosine kinase receptors (RTK). RA treatment altered both the RTK and the GPCR pathways in primary lung mesenchymal cells. The Epidermal Growth Factor (EGF) dependent erk-1/2 activation was increased by 35% whereas the G(i)-protein cascade was inhibited by 44% in cells treated with RA. Our results suggest that RA decreases proliferation of lung mesenchyme via a G(i)-protein and the erk-1/2 signaling cascade.  相似文献   

19.
Lin28a has diverse functions including regulation of cancer, reprogramming and regeneration, but whether it promotes injury or is a protective reaction to renal injury is unknown. We studied how Lin28a acts in unilateral ureteral obstruction (UUO)-induced renal fibrosis following unilateral ureteral obstruction, in a mouse model. We further defined the role of Lin28a in transforming growth factor (TGF)-signaling pathways in renal fibrosis through in vitro study using human tubular epithelium-like HK-2 cells. In the mouse unilateral ureteral obstruction model, obstruction markedly decreased the expression of Lin28a, increased the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin. In TGF-β-stimulated HK-2 cells, the expression of Lin28a was reduced and the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin was increased. Adenovirus-mediated overexpression of Lin28a inhibited the expression of TGF-β-stimulated type I collagen, α-SMA, vimentin and fibronectin. Lin28a inhibited TGF-β-stimulated SMAD3 activity, via inhibition of SMAD3 phos-phorylation, but not the MAPK pathway ERK, JNK or p38. Lin28a attenuates renal fibrosis in obstructive nephropathy, making its mechanism a possible therapeutic target for chronic kidney disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号