首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
【背景】西南高山葡萄酒产区的甘孜州产区,具有生产优质葡萄酒的自然禀赋。【目的】研究四川甘孜州葡萄酒产区真核微生物种类多样性、本土酿酒酵母遗传多样性,以及商业酵母对本土酵母多样性的影响。【方法】利用ITS高通量测序技术对赤霞珠接种发酵和自然发酵过程中的微生物进行多样性分析,并利用Interdelta指纹图谱分析法,对经过26S rRNA基因鉴定的野生酿酒酵母基因型进行分类。【结果】ITS测序结果显示,接种发酵和自然发酵各时期均注释到7个科7个属的酵母,通过Interdelta指纹图谱分析发现甘孜州产区的酿酒酵母共有5种基因型。该产区酿酒酵母的6株代表菌株与我国其他产区109株酿酒酵母的进化树分析结果显示,均与来自北京产区的酿酒酵母菌株亲缘关系更近。【结论】甘孜州葡萄酒子产区酵母资源丰富,表现出较高的微生物多样性和中等程度的本土酿酒酵母基因型多样性,为后续优良本土酵母菌株的筛选奠定基础。  相似文献   

2.
云南香格里拉葡萄酒产区酿酒相关酵母菌的生物多样性   总被引:2,自引:1,他引:1  
【背景】云南香格里拉高原葡萄酒产区位于云南三江并流世界自然遗产保护区内,微生物资源丰富,其中与葡萄酒酿造相关的野生酵母种类也非常多样。【目的】研究香格里拉葡萄酒产区酿酒相关酵母菌的种类多样性和酿酒酵母的遗传多样性。【方法】从香格里拉金沙江和澜沧江两岸选取5个葡萄园进行成熟葡萄样品的采集,分别对葡萄果皮和自然发酵过程中的酵母菌进行分离,运用WL营养琼脂鉴定培养基(Wallerstein laboratory nutrient agar)和26S rDNA D1/D2区序列分析法对酵母的种类进行鉴定,用SSR分子标记的方法研究酿酒酵母的遗传多样性。【结果】从香格里拉葡萄酒产区成熟浆果上共分离到230株野生酵母,鉴定为13属18种,其中有10种酵母为香格里拉地区首次发现。用SSR分子标记的方法对香格里拉分离到的47株酿酒酵母进行遗传多样性分析,47株酿酒酵母被分为24种基因型,11个微卫星位点共检测到70个等位基因,平均多态信息含量(PIC)为0.640,平均观测杂合度(Ho)为0.166,平均期望杂合度(He)为0.693。【结论】香格里拉葡萄酒产区酵母菌资源丰富,表现出较高的物种多样性和中等程度的酿酒酵母遗传多样性。研究该产区酵母菌的多样性,为香格里拉酵母资源多样性的保护和利用奠定基础。  相似文献   

3.
酿酒酵母是生物乙醇领域应用和研究的常用菌。综述了酿酒酵母基因组序列比较在提高基因功能注释准确性、发现不同菌株间分子结构变异、提供遗传育种潜在靶标基因等的相关研究,以及揭示酵母种间遗传进化关系,探究基因型与表型之间关联的研究进展。探讨了面向生物乙醇生产的酵母遗传育种,以满足工业生产需求。展望了随着测序菌株数量增多,酿酒酵母基因组的资源挖掘、重要价值和研究前景。  相似文献   

4.
接种发酵和自然发酵中酿酒酵母菌株多样性比较   总被引:1,自引:0,他引:1  
何荣荣  彭婧  孙悦 《微生物学报》2021,61(5):1211-1221
【目的】探究自然发酵和接种发酵两种发酵方式,对霞多丽葡萄发酵中酵母菌种多样性和酿酒酵母菌株遗传多样性的影响。【方法】以霞多丽葡萄为原料,分别进行自然发酵和接种不同酿酒酵母菌株(NXU17-26、UCD522和UCD2610)的发酵,利用26S rDNA D1/D2区序列分析和Interdelta指纹图谱技术分别进行酵母菌的种间及种内水平的区分,通过聚类分析及多样性指数对不同发酵方式下酿酒酵母菌株的多样性进行分析和比较。【结果】自然发酵的发酵曲线较平缓,接种发酵的发酵速度显著快于自然发酵。26S rDNA D1/D2区序列分析将4个发酵中分离到的酵母菌鉴定为6属11种,自然发酵中分离的酵母有5属6种,均为非酿酒酵母(non-Saccharomyces);而接种发酵中的酵母多样性远低于自然发酵,均由酿酒酵母和两种非酿酒酵母组成。Interdelta指纹图谱分析表明,接种UCD2610的发酵中,发酵后UCD2610是优势菌株,其基因型占比为48.78%;接种NXU17-26和UCD522的发酵中,未发现与NXU17-26和UCD522相同的基因型。聚类分析表明,分离自接种UCD522发酵中的酿酒酵母菌株间的遗传差异性较小;而分离自NXU17-26和UCD2610发酵中的酿酒酵母菌株间遗传差异性较大。多样性指数结果表明,接种UCD2610发酵中的优势菌株(UCD2610)在发酵过程中占据更加突出的地位;接种UCD522发酵中分离的酿酒酵母具有更高的多样性,影响其菌株多样性的未知因素较多,且不同基因型酿酒酵母的集中度较高。【结论】发酵方式对霞多丽葡萄发酵中酵母菌种多样性、以及酿酒酵母菌株遗传多样性的影响显著,研究结果对葡萄酒发酵中的微生物控制具有指导意义。  相似文献   

5.
西藏曲拉和云南乳饼中酵母菌的鉴定及其生物多样性   总被引:1,自引:0,他引:1  
【目的】探讨西藏曲拉和云南乳饼中酵母菌的生物多样性及其分布特征,为我国传统乳制品中酵母菌资源的利用提供基础数据。【方法】从西藏和云南分别采集的5份曲拉样品和8份乳饼样品中分离出41株酵母菌,利用26SrDNAD1/D2区域序列分析对这些菌株进行了分类鉴定。【结果】曲拉和乳饼样品中酵母菌的总数分别在106-107cfu/g和102-106cfu/g之间,曲拉样品的酵母菌平均数比乳饼样品中的高34倍。共鉴定出10属12种,其中西藏曲拉的优势菌株为发酵毕赤氏酵母(Pichia fermentans)和酿酒酵母(Saccharomyces cerevisiae);云南乳饼的优势菌株为类筒假丝酵母(Candida zeylanoides)和喜仙人掌毕赤氏酵母(Pichia cactophila)。毕赤氏酵母属(Pichia)是曲拉和乳饼的共同优势属。【结论】西藏曲拉和云南乳饼中的酵母菌都具有丰富的生物多样性,但其差异性很大。  相似文献   

6.
耐热克鲁维酵母(Lachancea thermotolerans)是一种具有优良酿造学特性的非酿酒酵母(non-Saccharomyces cevevisiae),近年来由于其对葡萄酒的发酵进程及香气、滋味等感官特性均有着重要影响而受到越来越多的关注。耐热克鲁维酵母突出的特点表现为高产乳酸、甘油、2-苯乙醇及乙酯类香气成分,低产乙醇及挥发酸类物质,并且相关研究显示不同耐热克鲁维酵母发酵对葡萄酒的影响存在明显的菌株特异性。文章围绕耐热克鲁维酵母的菌株多样性、其对葡萄酒质量的影响及在混合发酵中的应用等方面进行综述,以期为本土耐热克鲁维酵母菌株性状的筛选、产酸及产香机制的解析提供参考依据,促进我国酿酒微生物种质资源的良性发展。  相似文献   

7.
《微生物学通报》2008,35(5):F0003
依托塔里木大学建设的“新疆生产建设兵团塔里木盆地生物资源保护利用重点实验室”位于塔里木盆地腹地新疆阿拉尔市,于2004年6月成立。实验室以“环塔里木生物多样性”为主要研究对象,重点围绕“南疆特色果树种质资源与遗传育种、特殊微生物及其基因资源开发利用、荒漠植物生物多样性保护与环境重建、天然产物分子结构与功能”四个研究方向从事应用基础科学研究。在功能重组和合理架构的过程中,形成了果树种质资源研究室、果树遗传育种研究室、应用微生物研究室、生物多样性研究室、天然产物研究室、分子生物学研究室、分析测试室、植物组织培养及种苗繁育基地、化学工程及大规模发酵中试基地的“七室两基地”的研究单元。  相似文献   

8.
随着近年来系统生物学研究的深入,微生物的基因组、转录组、蛋白组及代谢组等不同层次的组学信息不断增加。我国具有丰富的微生物多样性,但目前对多样性的研究大多集中在物种多样性及生态多样性方面,对微生物菌株水平遗传多样性的研究还刚刚起步。以酿酒酵母和链霉菌为例,结合本课题组的成果,总结了近年来利用其基因组序列及转录组蛋白质等功能基因组信息,开发利用其遗传多样性的研究进展。在工业酿酒酵母中发现了多个独特的功能基因,包括絮凝基因及与环境胁迫耐性相关的调节蛋白基因,还发现了独特的启动子序列。此外,在海洋放线菌基因组中也发现了独特的调节基因。对微生物遗传多样性的挖掘利用,不仅有助于深入理解微生物不同菌株中独特的调节方式,也为微生物的代谢工程改造提供了大量新的可利用的遗传组件。  相似文献   

9.
对新疆石河子刺腿食蚜蝇Ischiodon scutellaris Fabricius内生可培养酵母菌和不可培养酵母菌的种类进行鉴定及多样性分析,明确刺腿食蚜蝇主要酵母种类及分布规律,为酵母菌资源的开发利用提供科学依据。通过Illumina (MiSeq)平台高通量测序和生物信息学分析,以及对刺腿食蚜蝇过滤液富集培养,选取其代表菌株进行糖发酵、碳源利用等生理生化检测及26S rDNA D1/D2区进行测序,对刺腿食蚜蝇中可培养酵母菌分离鉴定系统进化分析,得到刺腿食蚜蝇中酵母菌物种分布多样性信息及微生物群落结构组成。从刺腿食蚜蝇体内共分离获得14株可培养酵母菌株,属于Kodamaea,Saccharomyces,Wickerhamomyces 3个属;不可培养酵母菌含量≥1.49%,主要有16属,为Filobasidium(黑粉菌属),Udeniomyces,Candida(假丝酵母属),Metschnikowia(梅奇酵母属),Pichia(毕赤酵母属),Prototheca,Papiliotrema,Dipodascus,Kwoniella,Schizosaccharomyces(裂殖酵母),Acaromyces(阿卡酵母属),Cryptococcus(隐球酵母属),Cystofilobasidium,Tetrapisispora,Aureobasidium(金担子菌属),Zygosaccharomyces(接合酵母属)等。研究结果显示刺腿食蚜蝇内生酵母菌组成具有多样性,体内有着丰富的酵母菌种群,需要进一步开展昆虫体内的酵母菌种群的系统研究。  相似文献   

10.
乙酸是木质纤维素类生物质水解液中的常见毒性抑制物,选育乙酸耐受性好的酿酒酵母菌株,有利于高效利用木质纤维素类生物质,发酵生产生物燃料和生物基化学品。目前对酿酒酵母抗逆性的研究多集中在转录水平,但对转运RNA (Transfer RNA,tRNA) 在耐受性中的作用研究较少。在对酿酒酵母抗逆性研究过程中发现,一些转运RNA基因在耐受性好的酿酒酵母菌株中转录明显上调。本文深入分析了精氨酸tRNA基因tR(ACG)D和亮氨酸tRNA基因tL(CAA)K过表达对酿酒酵母耐受木质纤维素水解液的影响。结果表明,在4.2 g/L乙酸胁迫条件下进行乙醇发酵时,过表达tL(CAA)K的菌株生长和发酵性能均优于对照酵母菌株,乙醇生产强度比对照菌株提高了29.41%,但过表达tR(ACG)D基因的菌株生长和代谢能力较对照菌株明显降低,体现了不同tRNA的不同调控作用。进一步分析发现,过表达tL(CAA)K的重组酵母菌株乙酸耐受性调控相关基因HAA1、MSN2和MSN4等胁迫耐受性相关转录因子编码基因的转录水平上调。本文的研究为选育高效利用木质纤维素资源进行生物炼制的酵母菌株提供了新的改造策略,也为进一步揭示酿酒酵母tRNA基因表达调控对抗逆性的影响提供了基础。  相似文献   

11.
Saccharomyces cerevisiae is the preferred microorganism for the production of bioethanol from biomass. Industrial strain development for first-generation ethanol from sugar cane and corn mostly relies on the historical know-how from high gravity beer brewing and alcohol distilleries. However, the recent design of yeast platforms for the production of second–generation biofuels and green chemicals from lignocellulose exposes yeast to different environments and stress challenges. The industrial need for increased productivity, wider substrate range utilization, and the production of novel compounds leads to renewed interest in further extending the use of current industrial strains by exploiting the immense, and still unknown, potential of natural yeast strains. This review describes key metabolic engineering strategies tailored to develop efficient industrial and novel natural yeast strains towards bioethanol production from biomass. Furthermore, it shapes how proof-of-concept studies, often advanced in academic settings on natural yeast, can be upgraded to meet the requirements for industrial applications. Academic and industrial research should continue to cooperate on both improving existing industrial strains and developing novel phenotypes by exploring the vast biodiversity available in nature on the road to establish yeast biorefineries where a range of biomass substrates are converted into valuable compounds.  相似文献   

12.
Brewer’s yeast strain optimisation may lead to a more efficient beer production process, better final quality or healthier beer. However, brewer’s yeast genetic improvement is very challenging, especially true when it comes to lager brewer’s yeast (Saccharomyces pastorianus) which contributes to 90% of the total beer market. This yeast is a genetic hybrid and allopolyploid. While early studies applying traditional genetic approaches encountered many problems, the development of rational metabolic engineering strategies successfully introduced many desired properties into brewer’s yeast. Recently, the first genome sequence of a lager brewer’s strain became available. This has opened the door for applying advanced omics technologies and facilitating inverse metabolic engineering strategies. The latter approach takes advantage of natural diversity and aims at identifying and transferring the crucial genetic information for an interesting phenotype. In this way, strains can be optimised by introducing “natural” mutations. However, even when it comes to self-cloned strains, severe concerns about genetically modified organisms used in the food and beverage industry are still a major hurdle for any commercialisation. Therefore, research efforts will aim at developing new sophisticated screening methods for the isolation of natural mutants with the desired properties which are based on the knowledge of genotype–phenotype linkage.  相似文献   

13.
Diacetyl causes an unwanted buttery off-flavor in lager beer. It is spontaneously generated from α-acetolactate, an intermediate of yeast's valine biosynthesis released during the main beer fermentation. Green lager beer has to undergo a maturation process lasting two to three weeks in order to reduce the diacetyl level below its taste-threshold. Therefore, a reduction of yeast's α-acetolactate/diacetyl formation without negatively affecting other brewing relevant traits has been a long-term demand of brewing industry. Previous attempts to reduce diacetyl production by either traditional approaches or rational genetic engineering had different shortcomings. Here, three lager yeast strains with marked differences in diacetyl production were studied with regard to gene copy numbers as well as mRNA abundances under conditions relevant to industrial brewing. Evaluation of data for the genes directly involved in the valine biosynthetic pathway revealed a low expression level of Sc-ILV6 as a potential molecular determinant for low diacetyl formation. This hypothesis was verified by disrupting the two copies of Sc-ILV6 in a commercially used lager brewers' yeast strain, which resulted in 65% reduction of diacetyl concentration in green beer. The Sc-ILV6 deletions did not have any perceptible impact on beer taste. To our knowledge, this has been the first study exploiting natural diversity of lager brewers' yeast strains for strain optimization.  相似文献   

14.
Human intervention has subjected the yeast Saccharomyces cerevisiae to multiple rounds of independent domestication and thousands of generations of artificial selection. As a result, this species comprises a genetically diverse collection of natural isolates as well as domesticated strains that are used in specific industrial applications. However the scope of genetic diversity that was captured during the domesticated evolution of the industrial representatives of this important organism remains to be determined. To begin to address this, we have produced whole-genome assemblies of six commercial strains of S. cerevisiae (four wine and two brewing strains). These represent the first genome assemblies produced from S. cerevisiae strains in their industrially-used forms and the first high-quality assemblies for S. cerevisiae strains used in brewing. By comparing these sequences to six existing high-coverage S. cerevisiae genome assemblies, clear signatures were found that defined each industrial class of yeast. This genetic variation was comprised of both single nucleotide polymorphisms and large-scale insertions and deletions, with the latter often being associated with ORF heterogeneity between strains. This included the discovery of more than twenty probable genes that had not been identified previously in the S. cerevisiae genome. Comparison of this large number of S. cerevisiae strains also enabled the characterization of a cluster of five ORFs that have integrated into the genomes of the wine and bioethanol strains on multiple occasions and at diverse genomic locations via what appears to involve the resolution of a circular DNA intermediate. This work suggests that, despite the scrutiny that has been directed at the yeast genome, there remains a significant reservoir of ORFs and novel modes of genetic transmission that may have significant phenotypic impact in this important model and industrial species.  相似文献   

15.
Schwartz K  Wenger JW  Dunn B  Sherlock G 《Genetics》2012,191(2):621-632
Creating Saccharomyces yeasts capable of efficient fermentation of pentoses such as xylose remains a key challenge in the production of ethanol from lignocellulosic biomass. Metabolic engineering of industrial Saccharomyces cerevisiae strains has yielded xylose-fermenting strains, but these strains have not yet achieved industrial viability due largely to xylose fermentation being prohibitively slower than that of glucose. Recently, it has been shown that naturally occurring xylose-utilizing Saccharomyces species exist. Uncovering the genetic architecture of such strains will shed further light on xylose metabolism, suggesting additional engineering approaches or possibly even enabling the development of xylose-fermenting yeasts that are not genetically modified. We previously identified a hybrid yeast strain, the genome of which is largely Saccharomyces uvarum, which has the ability to grow on xylose as the sole carbon source. To circumvent the sterility of this hybrid strain, we developed a novel method to genetically characterize its xylose-utilization phenotype, using a tetraploid intermediate, followed by bulk segregant analysis in conjunction with high-throughput sequencing. We found that this strain's growth in xylose is governed by at least two genetic loci, within which we identified the responsible genes: one locus contains a known xylose-pathway gene, a novel homolog of the aldo-keto reductase gene GRE3, while a second locus contains a homolog of APJ1, which encodes a putative chaperone not previously connected to xylose metabolism. Our work demonstrates that the power of sequencing combined with bulk segregant analysis can also be applied to a nongenetically tractable hybrid strain that contains a complex, polygenic trait, and identifies new avenues for metabolic engineering as well as for construction of nongenetically modified xylose-fermenting strains.  相似文献   

16.
由于乙醇耐性受多基因控制,因此需要从全基因组水平进行改造以期得到高乙醇耐受的突变体。文中分别使用紫外诱变、等离子体诱变及人工转录因子3种方法对工业酿酒酵母Sc4126进行改造,获得了乙醇耐性提高的突变体,并比较了3种方法的正突变率。人工转录因子文库转化的方法获得了最多数量的乙醇耐性突变体,高出紫外诱变和等离子体诱变方法1~2个数量级,且遗传稳定。研究结果表明,人工转录因子技术可以用于对工业酿酒酵母快速进行基因组工程改造。  相似文献   

17.
《Fungal biology》2022,126(8):498-510
Changes in the natural environment require an organism to make constant adaptations enabling efficient use of environmental resources and ensuring its success in competition with other organisms. Such adaptations are expressed through various life strategies, largely determined by the rate of consumption and use of available resources, affecting the life-history traits and the related trade-offs. Allocation of available resources must take into consideration the costs of cell maintenance as well as reproduction. Given that carbon metabolism plays a crucial role in resource allocation, yeast living in different ecological niches show various life-history traits. There are a lot of data about life-history strategies in yeast living in various ecological niches; however, the question is whether different life strategies will be noted for yeast strains growing under strictly controlled conditions. Our studies based on three laboratory yeast strains representing different genetic backgrounds show that each of these strains has specified life strategies which are mainly determined by the glucose uptake rate and its intracellular usage. These results suggest that specific life strategies and related differences in the physiological and metabolic parameters of the cell are the key aspects that may explain various features of cells from different yeast strains, either industrial or laboratory.  相似文献   

18.
Roots of classical yeast genetics go back to the early work of Lindegreen in the 1930s, who studied thallism, sporulation and inheritance of wine yeast strains belonging to S. cerevisiae. Consequent mutation and hybridization of heterothallic S. cerevisae strains resulted in the discovery of life cycle and mating type system, as well as construction of the genetic map. Elaboration of induced mutation and controlled hybridization of yeast strains opened up new possibilities for the genetic analysis of technologically important properties and for the production of improved industrial strains, but a big drawback was the widely different genetic properties of laboratory and industrial yeast strains. Genetic analysis and mapping of industrial strains were generally hindered because of homothallism, poor sporulation and/or low spore viability of brewing and wine yeast strains [1, 2]. In spite of this, there are a few examples of the application of sexual hybridization in the study of genetic control of important technological properties, e.g. sugar utilization, flocculation and flavor production in brewing yeast strains [3] or in the improvement of ethanol producing S. cerevisiae strains [4]. Rare mating and application of karyogamy deficient (kar-) mutants also proved useful in strain improvement [5]. Importance of yeasts in biotechnology is enormous. This includes food and beverage fermentation processes where a wide range of yeast species are playing role, but S. cerevisiae is undoubtedly the most important species among them. New biotechnology is aiming to improve these technologies, but besides this, a completely new area of yeast utilization has been emerged, especially in the pharmaceutical and medical areas. Without decreasing the importance of S. cerevisiae, numerous other yeast species, e.g. Kluyveromyces lactis, Hansenula polymorpha, Pichia pastoris, Schizosaccharomyces pombe and Yarrowia lipolytica have gained increasing potentialities in the modern fermentation biotechnology [6]. Developments in yeast genetics, biochemistry, physiology and process engineering provided bases of rapid development in modern biotechnology, but elaboration of the recombinant DNA technique is far the most important milestone in this field. Other molecular genetic techniques, as molecular genotyping of yeast strains proved also very beneficial in yeast fermentation technologies, because dynamics of both the natural and inoculated yeast biota could be followed by these versatile DNA-based techniques.  相似文献   

19.
酶和细胞工厂是工业生物技术的核心,在医药、化工、食品、农业、能源等诸多领域发挥重要作用。一般天然酶和细胞均需通过分子改造提高其催化效率、稳定性及立体选择性等。定向改造为快速改善酶和细胞工厂的性能提供了可能性,其中灵敏可靠的高通量筛选方法是决定酶和细胞工厂成功高效定向改造的关键。文中阐述并分析讨论了各种筛选方法的优缺点、适用范围以及信号产生策略,并总结了近3年超高通量筛选技术在酶和细胞工厂定向改造中的最新研究进展。在此基础上,讨论了高通量筛选系统目前面临的限制性因素,并对高通量筛选方法未来的发展趋势作出了展望。希望生物技术和仪器开发等各领域的研究者能够紧密合作,实现协同发展,进一步提升高通量筛选技术的可靠性和适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号