首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

2.
3.
4.
5.
Reprograming somatic cells using exogenetic gene expression represents a groundbreaking step in regenerative medicine. Induced pluripotent stem cells(i PSCs) are expected to yield novel therapies with the potential to solve many issues involving incurable diseases. In particular, applying i PSCs clinically holds the promise of addressing the problems of immune rejection and ethics that have hampered the clinical applications of embryonic stem cells. However, as i PSC research has progressed, new problems have emerged that need to be solved before the routine clinical application of i PSCs can become established. In this review, we discuss the current technologies and future problems of human i PSC generation methods for clinical use.  相似文献   

6.
Research into the pathophysiological mechanisms of human disease and the development of targeted therapies have been hindered by a lack of predictive disease models that can be experimentally manipulated in vitro. This review describes the current state of modelling human diseases with the use of human induced pluripotent stem (iPS) cell lines. To date, a variety of neurodegenerative diseases, haematopoietic disorders, metabolic conditions and cardiovascular pathologies have been captured in a Petri dish through reprogramming of patient cells into iPS cells followed by directed differentiation of disease-relevant cells and tissues. However, realizing the true promise of iPS cells for advancing our basic understanding of disease and ultimately providing novel cell-based therapies will require more refined protocols for generating the highly specialized cells affected by disease, coupled with strategies for drug discovery and cell transplantation.  相似文献   

7.
Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.  相似文献   

8.
人类诱导多能干细胞(induced pluripotent stem cells,iPS细胞)的建立被公认为目前最重要的科技进展之一。iPS细胞在动物疾病模型上的成功治疗,病患特异性iPS细胞的研究及iPS细胞的定向分化研究将有可能使人们避开治疗性克隆的伦理和技术障碍,给人类疾病的干细胞治疗带来光明的前景。本文从iPS细胞的诱导策略和方法,来源细胞及筛选、重编程机制的研究现状、应用前景以及研究中存在的问题等方面对其作一综述和讨论。  相似文献   

9.
Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential.  相似文献   

10.
视网膜色素上皮(RPE)对视觉功能的维持起着至关重要的作用。视网膜变性是全球不可治愈性致盲疾病的重要原因,它由视网膜色素上皮功能失常所引起。因此,视网膜色素上皮移植是视网膜变性患者恢复视力的一种最有前景的手段之一。随着干细胞技术的快速发展,从多能干细胞(PSC)到有功能的视网膜色素上皮细胞的体外分化诱导技术已经成熟,其中包括胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)等。此外,从患者特异性iPSCs分化而来的RPE更能用于阐明发病机理并有针对性地个体治疗。更值得一提的是,经诱导得到RPE的移植不论在动物模型中,还是在临床试验里都已经得到了可喜的治疗效果。本文回顾PSC来源RPE干预治疗视网膜变性的最新研究进展。  相似文献   

11.
《Cell Stem Cell》2022,29(9):1346-1365.e10
  1. Download : Download high-res image (218KB)
  2. Download : Download full-size image
  相似文献   

12.
13.
Induced pluripotent stem cells (iPSCs) were first generated from mouse embryonic fibroblasts in the year 2006. These cells resemble the typical morphology of embryonic stem cells, express pluripotency markers, and are able to transmit through germlines. To date, iPSCs of many species have been generated, whereas generation of bat iPSCs (biPSCs) has not been reported. To facilitate in-depth study of bats at the molecular and cellular levels, we describe the successful derivation of biPSCs with a piggyBac (PB) vector that contains eight reprogramming factors Oct4, Sox2, Klf4, Nanog, cMyc, Lin28, Nr5a2, and miR302/367. These biPSCs were cultured in media containing leukemia inhibitory factor and three small molecule inhibitors (CHIR99021, PD0325901, and A8301). They retained normal karyotype, displayed alkaline phosphatase activity, and expressed pluripotency markers Oct4, Sox2, Nanog, TBX3, and TRA-1-60. They could differentiate in vitro to form embryoid bodies and in vivo to form teratomas that contained tissue cells of all three germ layers. Generation of biPSCs will facilitate future studies on the mechanisms of antiviral immunity and longevity of bats at the cellular level.  相似文献   

14.
15.
Due to the extremely limited proliferative capacity of adult cardiomyocytes, human embryonic (pluripotent) stem cell derived cardiomyocytes (hESC-CMs) are currently almost the only reliable source of human heart cells which are suited to large-scale production. These cells have the potential for wide-scale application in drug discovery, heart disease research and cell-based heart repair. Embryonic atrial-, ventricular- and nodal-like cardiomyocytes can be obtained from differentiated human embryonic stem cells (hESCs). In recent years, several highly efficient cardiac differentiation protocols have been developed. Significant progress has also been made on understanding cardiac subtype specification, which is the key to reducing the heterogeneity of hESC-CMs, a major obstacle to the utilization of these cells in medical research and future cell-based replacement therapies. Herein we review recent progress in cardiac differentiation of hESCs and cardiac subtype specification, and discuss potential applications in drug screening and cell-based heart regeneration.  相似文献   

16.
Hepatic stem cells are an alternative means for repopulating the liver after various injuries instead of liver transplantation. The first step before use is to select stem cells that will be good candidates. This review discusses the different candidates including fetal progenitor bipotential hepatic stem cells; adult hepatocytes, which can be considered as unipotential committed stem cells; and oval cells, a type of nonparenchymal pluripotential hepatic stem cell. The advantages and disadvantages of each type of cell are discussed and several other possible alternatives, such as the use of hematopoietic stem cells are analyzed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
In recent years, significant progress has been made internationally in the development of human pluripotent stem cell (hPSC)‐derived products for serious and widespread disorders. Biobanking of the cellular starting materials is a crucial component in the delivery of safe and regulatory compliant cell therapies. In China, key players in these developments have been the recently launched National Stem Cell Resource Center (NSCRC) and its partner organizations in Guangzhou and Shanghai who together, have more than 600 hPSC lines formally recorded in the Chinese Ministry of Science and Technology''s stem cell registry. In addition, 47 of these hPSCs have also been registered with the hPSCreg project which means they are independently certified for use in European Commission funded research projects. The NSCRC are currently using their own cell lines to manufacture eight different cell types qualified for clinical use, that are being used in nine clinical studies for different indications. The Institute of Zoology at the Chinese Academy of Sciences (IOZ‐CAS) has worked with NSCRC to establish Chinese and international standards in stem cell research. IOZ‐CAS was also a founding partner in the International Stem Cell Banking Initiative which brings together key stem cell banks to agree minimum standards for the provision of pluripotent stem cells for research and clinical use. Here, we describe recent developments in China in the establishment of hPSCs for use in the manufacture of cell therapies and the significant national and international coordination which has now been established to promote the translation of Chinese hPSC‐based products into clinical use according to national and international standards.  相似文献   

18.
体细胞通过重编程转变成其他类型的细胞,在再生医学方面具有重要的应用前景。细胞重编程的方法主要有体细胞核移植、细胞融合、细胞提取物诱导、限定因子诱导等,这些方法可以不同程度地改变细胞命运。最近,限定因子诱导的多能干细胞(induced pluripotent stem cell。iPS)为重编程提供了一种崭新的方法,不仅可以避免伦理争议,还提供了一种更为便利的技术,为再生医学开辟了新的天地;同时,iPS技术为研究基因表达调控、蛋白质互作、机体生长发育等提供了一个非常重要的研究手段。本文主要论述了体细胞重编程的方法及iPS细胞的进展、面临的问题和应用前景。  相似文献   

19.
m~6A是真核生物m RNA中重要的转录后修饰,METTL3作为m~6A甲基转移酶复合物中的重要组分,在细胞重编程、胚胎干细胞和诱导多能干细胞的干性维持、胚胎发育等过程中发挥重要作用。为了揭示猪METTL3的表达模式,对不同物种METTL3蛋白序列进行了比对,用RT-PCR检测了METTL3基因在不同猪组织和细胞中的表达情况,并确认了METTL3的细胞核定位。为了研究METTL3对猪干细胞多能基因表达的调控作用,克隆了猪METTL3编码区序列,设计了METTL3干扰片段,并构建了相应的过表达和沉默载体。发现干扰METTL3的表达后,猪多能干细胞出现类似na?ve状态的细胞克隆,NANOG、OCT4和LIN28A表达水平显著升高。在猪多能干细胞培养基中添加m~6A甲基化抑制剂环亮氨酸培养细胞48 h后,试验结果与干扰METTL3表达的结果一致。本研究为优化猪多能干细胞的培养体系提供了新的方向和依据。  相似文献   

20.
贾振伟 《遗传》2016,38(7):603-611
线粒体是细胞内重要的细胞器,主要功能是通过氧化磷酸化为细胞生命活动提供能量。近年来,研究表明,在多潜能干细胞(Pluripotent stem cells, PSCs)中线粒体表现出独有的特征,即在多能性状态下,PSCs主要依靠糖酵解提供能量,其分化期间线粒体氧化磷酸化代谢能力逐渐增强。相反,体细胞重编程为多潜能干细胞期间,线粒体氧化磷酸化向糖酵解途径的转变是其成功重编程必需的代谢过程。另外,线粒体通过生物合成和形态结构的动态重塑维持了PSCs多能性、诱导分化及诱导多能干细胞(Induced pluripotent stem cells, iPSCs)的重编程。因此,本文综述了PSCs线粒体形态结构及其在调控PSCs多能性、合成代谢、氧化还原状态的平衡、分化及重新编程中的作用,为深入了解线粒体调控PSCs功能的作用提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号