首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Study of hepatocyte differentiation using embryonic stem cells   总被引:9,自引:0,他引:9  
The liver has many crucial functions including metabolizing dietary molecules, detoxifying compounds, and storing glycogen. The hepatocytes, comprising most of the liver organ, progressively modify their gene expression profile during the fetal development according to their roles in the different phases of development. Embryonic stem (ES) cells serve as a major tool in understanding liver development. These cells may also serve as a source of hepatic cells for cellular therapy. In this review, we aim to summarize the research that has been performed in the field of hepatocyte differentiation from mouse and human ES cells. We discuss the various methodologies for the differentiation of ES cells towards hepatic cells using either spontaneous or directed differentiation protocols. Although many protocols for differentiating ES cells to hepatic cells have been developed, the analysis of their status is not trivial and can lead to various conclusions. Hence, we discuss the issues of analyzing hepatocytes by means of the specificity of the markers for hepatocytes and the status of the cells as fetal or adult hepatocytes.  相似文献   

2.
Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end‐stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end‐stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra‐hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra‐hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. J. Cell. Physiol. 228: 298–305, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Hepatocyte transplantation is considered as an alternative to organ transplantation in particular for the treatment of liver metabolic diseases. However, due to the difficulties to obtain a large number of hepatocytes, new sources of cells are needed. These cells could be either of hepatic origin (hepatic stem cells) or extrahepatic such as mesenchymal stem cells or pluripotent stem cells (human embryonic stem cells [hESC] or iPS). We developed a new method to differentiate hESCs into fetal hepatocytes. These conditions recapitulate the main liver developmental stages, using fully defined medium devoid of animal products or unknown factors. The differentiated cells express many fetal hepatocytes markers (cytochrome P450 3A7, albumin, alpha-1-antitrypsin, etc.). The cells display specific hepatic functions (ammonia metabolism, excretion of indocyanin green) and are capable to engraft and express hepatic proteins two months after transplantation into newborn uPAxrag2gc-/- mouse liver. We have also showed that this approach is transposable to human iPS, and further studies on animal models will allow us to compare the in vivo potential of these two sources of pluripotent cells. Finally, only studies on large animals such as nonhuman primates will validate an eventual clinical application.  相似文献   

4.
Oxygen and extracellular matrix (ECM)-derived biopolymers play vital roles in regulating many cellular functions in both the healthy and diseased liver. This study highlights the significance of synergistically tuning the internal microenvironment of three-dimensional (3D) cell aggregates composed of hepatocyte-like cells from the HepG2 human hepatocellular carcinoma cell line and hepatic stellate cells (HSCs) from the LX-2 cell line to enhance oxygen availability and phenotypic ECM ligand presentation for promoting the native metabolic functions of the human liver. First, fluorinated (PFC) chitosan microparticles (MPs) were generated with a microfluidic chip, then their oxygen transport properties were studied using a custom ruthenium-based oxygen sensing approach. Next, to allow for integrin engagements the surfaces of these MPs were functionalized using liver ECM proteins including fibronectin, laminin-111, laminin-511, and laminin-521, then they were used to assemble composite spheriods along with HepG2 cells and HSCs. After in vitro culture, liver-specific functions and cell adhesion patterns were compared between groups and cells showed enhanced liver phenotypic responses to laminin-511 and 521 as evidenced via enhanced E-cadherin and vinculin expression, as well as albumin and urea secretion. Furthermore, hepatocytes and HSCs exhibited more pronounced phenotypic arrangements when cocultured with laminin-511 and 521 modified MPs providing clear evidence that specific ECM proteins have distinctive roles in the phenotypic regulation of liver cells in engineering 3D spheroids. This study advances efforts to create more physiologically relevant organ models allowing for well-defined conditions and phenotypic cell signaling which together improve the relevance of 3D spheroid and organoid models.  相似文献   

5.
6.
Diseases leading to terminal hepatic failure are among the most common causes of death worldwide. Transplant of the whole organ is the only effective method to cure liver failure. Unfortunately, this treatment option is not available universally due to the serious shortage of donors. Thus, alternative methods have been developed that are aimed at prolonging the life of patients, including hepatic cells transplantation and bridging therapy based on hybrid bioartificial liver devices. Parenchymal liver cells are highly differentiated and perform many complex functions, such as detoxification and protein synthesis. Unfortunately, isolated hepatocytes display a rapid decline in viability and liver‐specific functions. A number of methods have been developed to maintain hepatocytes in their highly differentiated state in vitro, amongst them the most promising being 3D growth scaffolds and decellularized tissues or coculture with other cell types required for the heterotypic cell‐cell interactions. Here we present a novel approach to the hepatic cells culture based on the feeder layer cells genetically modified using lentiviral vector to stably produce additional amounts of hepatocyte growth factor and show the positive influence of these coculture conditions on the preservation of the hepatic functions of the liver parenchymal cells' model—C3A cells.  相似文献   

7.
8.
To engineer reliable in vitro liver tissue equivalents expressing differentiated hepatic functions at a high level and over a long period of time, it appears necessary to have liver cells organized into a three‐dimensional (3D) multicellular structure closely resembling in vivo liver cytoarchitecture and promoting both homotypic and heterotypic cell–cell contacts. In addition, such high density 3D hepatocyte cultures should be adequately supplied with nutrients and particularly with oxygen since it is one of the most limiting nutrients in hepatocyte cultures. Here we propose a novel but simple hepatocyte culture system in a microplate‐based format, enabling high density hepatocyte culture as a stable 3D‐multilayer. Multilayered co‐cultures of hepatocytes and 3T3 fibroblasts were engineered on collagen‐conjugated thin polydimethylsiloxane (PDMS) membranes which were assembled on bottomless frames to enable oxygen diffusion through the membrane. To achieve high density multilayered co‐cultures, primary rat hepatocytes were seeded in large excess what was rendered possible due to the removal of oxygen shortage generally encountered in microplate‐based hepatocyte cultures. Hepatocyte/3T3 fibroblasts multilayered co‐cultures were maintained for at least 1 week; the so‐cultured cells were normoxic and sustained differentiated metabolic functions like albumin and urea synthesis at higher levels than hepatocytes monocultures. Such a microplate‐based cell culture system appears suitable for engineering in vitro miniature liver tissues for implantation, bioartificial liver (BAL) development, or chemical/drug screening. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011.  相似文献   

9.
Hepatocytes are polarized and fulfill a variety of liver‐specific functions in vivo; but the polarized tissue structure and many of these functions are lost when the cells are cultured on plastic. To recapitulate the polarized structure and tissue‐specific function of liver cells in culture, we established a three‐dimensional (3D) culture assay with the human hepatocyte line QSG‐7701. In 3D Matrigel culture, QSG‐7701 cells formed polarized spheroids with a center lumen, which is reminiscent of bile canaliculi in the liver. Immunofluoresence analysis showed that F‐actin bundles and radixin were mainly located at the apical membrane and that α6 and β1 integrins were localized basally in 3D culture. Lumen formation was associated with the selective apoptosis of centrally located cells and was accompanied by proliferative suppression during acinar development. Compared to QSG‐7701 cells in 2D or agarose gel cultures, the cells in 3D Matrigel culture maintained a given direction of biliary excretion and acquired higher levels of cytochrome P450 and albumin expression. Our study shows that the immortal human hepatocytes, QSG‐7701, in 3D Matrigel culture reacquire cardinal features of glandular epithelium in vivo, providing an ex vivo model to study liver‐specific function and tumorigenesis. J. Cell. Biochem. 110: 1175–1186, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

10.
Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better understanding of these mechanisms in a human-relevant environment could aid the discovery of drugs against pathogenic liver infection.  相似文献   

11.
Stem cells of the bone marrow, including hematopoietic stem cells (HSC), mesenchymal stem cells (MSC) and hepatic progenitors were reported to give rise to hepatocytes by both transdifferentiation and cellular fusion. Transdifferentiation was observed without liver damage although significant numbers of stem cell derived hepatocytes were not described. Cellular fusion was demonstrated in the presence of a proliferation stimulus in conjunction with impaired intrinsic liver regeneration capacity. Here, we review potential therapeutic applications of stem cell derived hepatocytes depending on how they emerge. Stem cells turning into hepatocytes by transdifferentiation introduce new functioning liver cells into a diseased organ, which can support intrinsic liver regeneration or bridge the time gap until a definitive treatment is available. When cellular fusion is the mechanism behind stem cell plasticity, however, no new cells emerge in the first place, whereas new genetic material is introduced. The fusion cell thereby acquires a selective advantage over resident hepatocytes allowing for extensive proliferation and liver repopulation. Therefore genetic deficiencies might be the predominant target for cell fusion therapies. We conclude that transdifferentiation and cellular fusion might be powerful tools for the therapy of liver diseases in the future and we propose the introduction of artificial cell fusion as well as stem cell differentiation as therapeutic options.  相似文献   

12.
13.
We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.  相似文献   

14.
Different types of stem cells have a role in liver regeneration or fibrous repair during and after several liver diseases. Otherwise, the origin of hepatic and/or extra‐hepatic stem cells in reactive liver repopulation is under controversy. The ability of the human body to self‐repair and replace the cells and tissues of some organs is often evident. It has been estimated that complete renewal of liver tissue takes place in about a year. Replacement of lost liver tissues is accomplished by proliferation of mature hepatocytes, hepatic oval stem cells differentiation, and sinusoidal cells as support. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes, and bile ductular cells. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy, and acute or chronic hepatopaties. In the future, pluripotent plasticity of stem cells will open a variety of clinical application strategies for the treatment of tissue injuries, degenerated organs. The promise of liver stem cells lie in their potential to provide a continuous and readily available source of liver cells that can be used for gene therapy, cell transplant, bio‐artificial liver‐assisted devices, drug toxicology testing, and use as an in vitro model to understand the developmental biology of the liver. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
There is increasing evidence that human mesenchymal stem cells (hMSCs) can be a valuable, transplantable source of hepatocytes. Most of the hMSCs preparations used in these studies were likely heterogeneous cell populations, isolated by adherence to plastic surfaces or by density gradient centrifugation. Therefore, the participation of other unknown trace cell populations cannot be rigorously discounted. Here we report the isolation and establishment of a cloned human MSC line (chMSC) from human bone marrow primary culture, through which we confirmed the hepatic differentiation capability of authentic hMSCs. chMSCs expressed markers of mesenchymal cells, but not markers of hematopoietic stem cells. In vitro, chMSCs can differentiate into either mesenchymal cells or cells exhibiting hepatocyte‐like phenotypes. When transplanted intrasplentically into carbon tetrachloride‐injured livers of SCID mice, EGFP‐tagged chMSCs engrafted into the host liver parenchyma, exhibited typical hepatocyte morphology, form a three‐dimensional architecture, and differentiate into hepatocyte‐like cells expressing human albumin and α‐1‐anti‐trypsin. By confocal microscopy, ultrafine intercellular nanotubular structures were visible between adjacent transplanted and host hepatocytes. We postulate that these structures may assist in the phenotype conversion of chMSCs, possibly by exchange of cytoplasmic components between native hepatocytes and transplanted cells. Thus, a clonal pure population of hMSCs, which can be expanded in culture, may have potential as a cellular source for substitution damaged cells in hepatic injury. J. Cell. Biochem. 108: 693–704, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Abstract

Research involving differentiated embryonic stem (ES) cells may revolutionize the study of liver disease, improve the drug discovery process, and assist in the development of stem-cell-based clinical therapies. Generation of ES cell-derived hepatic tissue has benefited from an understanding of the cytokines, growth factors and biochemical compounds that are essential in liver development, and this knowledge has been used to mimic some aspects of embryonic development in vitro. Although great progress has been made in differentiating human ES cells into liver cells, current protocols have not yet produced cells with the phenotype of a mature hepatocyte. There is a of disease models have been examined concerning whether stem cells can correct liver disease. It is a bit premature to conclude that hepatocytes can be generated from non-hepatic cells in culture that will be clinically useful. Standard criteria will need to be developed to assess the extent to which human stem cell-derived hepatocytes have been produced.  相似文献   

17.
Isolated primary hepatocytes from the liver are very similar to in vivo native liver hepatocytes, but they have the disadvantage of a limited lifespan in 2D culture. Although a sandwich culture and 3D organoids with mesenchymal stem cells (MSCs) as an attractive assistant cell source to extend lifespan can be used, it cannot fully reproduce the in vivo architecture. Moreover, long-term 3D culture leads to cell death because of hypoxic stress. Therefore, to overcome the drawback of 2D and 3D organoids, we try to use a 3D printing technique using alginate hydrogels with primary hepatocytes and MSCs. The viability of isolated hepatocytes was more than 90%, and the cells remained alive for 7 days without morphological changes in the 3D hepatic architecture with MSCs. Compared to a 2D system, the expression level of functional hepatic genes and proteins was higher for up to 7 days in the 3D hepatic architecture. These results suggest that both the 3D bio-printing technique and paracrine molecules secreted by MSCs supported long-term culture of hepatocytes without morphological changes. Thus, this technique allows for widespread expansion of cells while forming multicellular aggregates, may be applied to drug screening and could be an efficient method for developing an artificial liver.  相似文献   

18.
Liver disease is an important clinical problem, impacting over 30 million Americans and over 600 million people worldwide. It is the 12th leading cause of death in the United States and the 16th worldwide. Due to a paucity of donor organs, several thousand Americans die yearly while waiting for liver transplantation. Unfortunately, alternative tissue sources such as fetal hepatocytes and hepatic cell lines are unreliable, difficult to reproduce, and do not fully recapitulate hepatocyte phenotype and functions. As a consequence, alternative cell sources that do not have these limitations have been sought. Human embryonic stem (hES) cell- and induced pluripotent stem (iPS) cell-derived hepatocyte-like cells may enable cell based therapeutics, the study of the mechanisms of human disease and human development, and provide a platform for screening the efficacy and toxicity of pharmaceuticals. iPS cells can be differentiated in a step-wise fashion with high efficiency and reproducibility into hepatocyte-like cells that exhibit morphologic and phenotypic characteristics of hepatocytes. In addition, iPS-derived hepatocyte-like cells (iHLCs) possess some functional hepatic activity as they secrete urea, alpha-1-antitrypsin, and albumin. However, the combined phenotypic and functional traits exhibited by iHLCs resemble a relatively immature hepatic phenotype that more closely resembles that of fetal hepatocytes rather than adult hepatocytes. Specifically, iHLCs express fetal markers such as alpha-fetoprotein and lack key mature hepatocyte functions, as reflected by drastically reduced activity (~ 0.1%) of important detoxification enzymes (i.e. CYP2A6, CYP3A4). These key differences between iHLCs and primary adult human hepatocytes have limited the use of stem cells as a renewable source of functional adult hepatocytes for in vitro and in vivo applications. Unfortunately, the developmental pathways that control hepatocyte maturation from a fetal into an adult hepatocyte are poorly understood, which has hampered the field in its efforts to induce further maturation of iPS-derived hepatic lineage cells. This review analyzes recent developments in the derivation of hepatocyte-like cells, and proposes important points to consider and assays to perform during their characterization. In the future, we envision that iHLCs will be used as in vitro models of human disease, and in the longer term, provide an alternative cell source for drug testing and clinical therapy.  相似文献   

19.
During early stage of embryonic development, the liver bud, arising from the foregut endoderm, is the beginning for the formation of future liver three-dimensional structure. While the gene expression profiles associated with this developmental stage have been well explored, the detailed cellular events are not as clear. Epithelial-mesenchymal transition (EMT) was thought to be essential for cell migration in the early vertebrate embryo but seldom demonstrated in human liver development. In this study, we tried to identify the cell populations with both stem cell and EMT features in the human liver bud. Our in situ studies show that the phenotype of EMT occurs at initiation of human liver development, accompanied by up-regulation of EMT associated genes. A human liver bud derived stem cell line (hLBSC) was established, which expressed not only genes specific to both mesenchymal cells and hepatic cells, but also octamer-binding protein 4 (OCT4) and nanog. Placed in appropriate media, hLBSC differentiated into hepatocytes, adipocytes, osteoblast-like cells and neuron-like cells in vitro. When transplanted into severe combined immunodeficiency mice pre-treated by carbon tetrachloride, hLBSC engrafted into the liver parenchyma and proliferated. These data suggests that there are cell populations with stem cell and EMT-like properties in the human liver bud, which may play an important role in the beginning of the spatial structure construction of the liver.  相似文献   

20.
Temporary replacement of specific liver functions with extracorporeal bioartificial liver has been hampered by rapid de‐differentiation of porcine hepatocytes in vitro. Co‐cultivation of hepatocytes with non‐parenchymal cells may be beneficial for optimizing cell functions via mimicry of physiological microenvironment consisting of endogenous matrix proteins. However, the underlying mechanisms remain to be elucidated. A randomly distributed co‐culture system composed of porcine hepatocytes and bone marrow mesenchymal stem cells was generated, and the morphological and functional changes of varying degrees of heterotypic interactions were characterized. Furthermore, contributions of extracellular matrix within this co‐culture were evaluated. A rapid attachment and self‐organization of three‐dimensional hepatocyte spheroids were encouraged. Studies on hepatocyte viability showed a metabolically active, viable cell population in all co‐culture configurations with occurrence of few dead cells. The maximal induction of albumin production, urea synthesis, and cytochrome P4503A1 activities was achieved at seeding ratio of 2:1. Immunocytochemical detection of various extracellular matrix confirmed that a high level of matrix proteins synthesis within distinct cells was involved in hepatocyte homeostasis. These results demonstrate for the first time that cell–matrix has synergic effects on the preservation of hepatic morphology and functionality in the co‐culture of porcine hepatocytes with mesenchymal stem cells in vitro, which could represent a promising tool for tissue engineering, cell biology, and bioartificial liver devices. J. Cell. Physiol. 219: 100–108, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号