首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
细菌小RNA (Small RNAs,sRNAs)是一类长度大约在40?400个核酸之间,不编码蛋白质的RNA,在细菌适应环境方面起重要的调节作用。当环境中温度、营养、外膜蛋白、pH、铁等条件改变时,sRNA常常通过连接双组分信号转导系统和调节蛋白,来传递压力信号并调节应激响应,其作用方式一般是通过碱基互补配对的方式与靶mRNA结合,从而调控靶mRNA的翻译和稳定性;或直接与靶标蛋白质结合,调节靶标蛋白质的生物活性。本文总结了细菌在多种环境压力下,sRNA的调控响应机制。  相似文献   

2.
RNA分子伴侣Hfq是细菌重要的转录后调节因子,它能够帮助非编码small RNA(sRNA)与目标mRNA配对.mRNA rpoS编码的稳态sigma因子σS是大肠杆菌中应激响应的核心调控因子.在低温下,Hfq蛋白对于sRNA DsrA介导的mRNA rpoS的翻译激活是必需的.然而,Hfq使用何种机制来促进sRNA和mRNA配对一直有两种并不互斥的模型存在:Hfq远侧和近侧两个表面同时结合sRNA和mRNA,使得两条RNA相互靠近,便于形成碱基配对;Hfq可能结合一条或者两条RNA,改变它们的二级结构或者三级结构,从而促进sRNA-mRNA配对的实现.最近的研究报道,成功在体外捕捉到了sRNA-Hfq-mRNA三元复合物,测定了AU6A-Hfq-A7三元复合物的晶体结构,并且在大肠杆菌体内证实了三元复合物的形成对于Hfq帮助sRNA DsrA激活mRNA rpoS的翻译是重要的.本文以sRNA DsrA和mRNA rpoS为例综述了蛋白质Hfq与RNA的结合特性,同时也讨论了sRNA-Hfq-mRNA三元复合物的存在对于研究sRNA介导的调控机制的一些启示.  相似文献   

3.
细菌非编码小RNA(small non-coding RNA,sRNA)是一类长度在50-200个核苷酸,不编码蛋白质的RNA.它们通过碱基配对识别靶标mRNA,在转录后水平调节基因的表达,是细菌代谢、毒力和适应环境压力的重要调节因子.近年来,随着生物信息学和RNA组学技术应用于细菌sRNA的筛选,sRNA已被证实存在于大肠埃希杆菌(Escherichia coli),铜绿假单胞菌(Pseudomonas aeruginosa)、霍乱弧菌(Vibrio cholerae)等细菌中,是细菌基因调控中新的调节因子.本文对细菌中非编码小RNA的筛选和鉴定技术作一个简要论述.  相似文献   

4.
细菌在生存过程中要面对复杂多样的环境,在长期进化过程中,细菌逐渐形成不同的应答机制来感应环境信号的变化,并通过精确的基因表达来调控生理生化反应。基因表达调控可分为转录水平和转录后水平两个方面,对于细菌来说,非编码RNA在转录后调控上发挥着重要的作用,而大多数非编码RNA与靶标m RNA的相互作用过程又离不开Hfq蛋白的辅助。本文综述了非编码RNA的分类、调控特点,伴侣蛋白Hfq的结构、功能以及两者相互作用的机制,以期深入了解非编码RNA及其伴侣蛋白Hfq在转录后调控中发挥的作用。  相似文献   

5.
细菌中的非编码小RNA(small RNA,sRNA)作为一种靶向调控分子在细胞生理代谢过程中具有重要作用。sRNA作用于特定靶标,调控基因的表达。大肠杆菌大约有100种sRNA,其中1/3sRNA需要伴侣蛋白Hfq的介导。病原细菌中sRNA分子如何调控致病基因的表达,目前研究仍处于初级阶段。本文将从生物膜形成、细菌耐药性以及对宿主的影响等方面,结合新颖的sRNA的研究方法,综述sRNA在调控代谢网络及控制病原菌致病性方面的作用。  相似文献   

6.
小RNA(smallRNA,sRNA)在基因表达调控和生长发育等方面发挥着重要作用。细菌sRNA多通过与靶mRNA配对,转录后水平影响目的mRNA翻译或(和)稳定性,对基因的表达进行调节,以影响细胞的多种生理功能。本文从细菌sRNA与真核生物微RNA(microRNA,miRNA)的比较,sRNA的分类,sRNA分子伴侣Hfq及sRNA鉴别方法等方面综述了sRNA的研究进展,指出目前sRNA研究仍然存在的问题。原核生物中sRNA的大量发现和深入研究,有可能使人们对生物进化和生命的发展过程有更为深入的认识与了解。  相似文献   

7.
细菌非编码小RNA研究进展   总被引:3,自引:1,他引:2  
细菌非编码小RNA(small non-coding RNA, sRNA)是一类长度在50~500个核苷酸, 不编码蛋白质的RNA。迄今, 在各种细菌中共发现超过150多种sRNA。它们通过碱基配对识别靶标mRNA, 在转录后水平调节基因的表达, 是细菌代谢、毒力和适应环境压力的重要调节因子。细菌sRNA的研究技术主要有基于生物信息学的计算机预测法和基于实验室的检测分析方法。这些方法所得到的sRNA都需要进行实验室确认, 然后再进一步通过各种实验手段研究其功能。  相似文献   

8.
RNA降解体(细菌RNA降解的主要执行者)是一种多亚基的蛋白质复合物,主要由RNA解螺旋酶、聚核苷酸磷酸化酶(polynucleotide phosphorylase,PNPase)、内切核酸酶(ribonuclease E,RNase E)以及糖酵解途径中的烯醇化酶、磷酸果糖激酶等组成,参与核糖体RNA(ribosome RNA,rRNA)的加工以及信使RNA(messenger RNA,mRNA)的降解。此外,RNA分子伴侣Hfq和调控小RNA(small RNA,sRNA)在RNA稳定性调控中也发挥着重要作用。综述了细菌RNA稳定性调控相关功能元件,特别是降解体蛋白及RNA分子伴侣Hfq的最新进展,以期为研究细菌RNA稳定性及其参与的代谢调控提供理论参考。  相似文献   

9.
当细菌面对较高浓度的葡萄糖时,随着葡萄糖摄入,常会导致菌体内部葡糖-6-磷酸的大量累积。在磷酸糖浓度达到一定阈值时,就会形成一种毒性胁迫从而抑制菌体的代谢与生长。许多细菌则会通过一种小RNA SgrS (sugar transport-related sRNA)的转录后调控作用,来解除这种糖胁迫抑制作用。SgrS在分子伴侣Hfq的协助下,与相应靶mRNA通过碱基互补配对方式结合,对ptsG mRNA和manXYZ mRNA进行负调控以减少糖类摄入,并对yigL mRNA进行正调控以增大糖类排出,从而提高细胞对糖胁迫的耐受性。与一般sRNA不同,SgrS作为一种双功能sRNA,除具有转录后调控功能外,还能够翻译出蛋白质SgrT。SgrS广泛存在于肠杆菌中,但不同菌属中SgrS的差异极大。本文主要对SgrS在细菌中的功能、分布及其差异进行综述。  相似文献   

10.
细菌中的非编码小RNA(small RNA, sRNA)作为一种靶向调控分子在细胞生理代谢过程中具有重要作用。sRNA作用于特定靶标,调控基因的表达。大肠杆菌大约有100种sRNA,其中1/3 sRNA需要伴侣蛋白Hfq的介导。病原细菌中sRNA分子如何调控致病基因的表达,目前研究仍处于初级阶段。本文将从生物膜形成、细菌耐药性以及对宿主的影响等方面,结合新颖的sRNA的研究方法,综述sRNA在调控代谢网络及控制病原菌致病性方面的作用。  相似文献   

11.
12.
Ribosome biogenesis is a complex process involving multiple factors. Here, we show that the widely conserved RNA chaperone Hfq, which can regulate sRNA‐mRNA basepairing, plays a critical role in rRNA processing and ribosome assembly in Escherichia coli. Hfq binds the 17S rRNA precursor and facilitates its correct processing and folding to mature 16S rRNA. Hfq assists ribosome assembly and associates with pre‐30S particles but not with mature 30S subunits. Inactivation of Hfq strikingly decreases the pool of mature 70S ribosomes. The reduction in ribosome levels depends on residues located in the distal face of Hfq but not on residues found in the proximal and rim surfaces which govern interactions with the sRNAs. Our results indicate that Hfq‐mediated regulation of ribosomes is independent of its function as sRNA‐regulator. Furthermore, we observed that inactivation of Hfq compromises translation efficiency and fidelity, both features of aberrantly assembled ribosomes. Our work expands the functions of the Sm‐like protein Hfq beyond its function in small RNA‐mediated regulation and unveils a novel role of Hfq as crucial in ribosome biogenesis and translation.  相似文献   

13.
14.
Hfq protein is vital for the function of many non-coding small (s)RNAs in bacteria but the mechanism by which Hfq facilitates the function of sRNA is still debated. We developed a fluorescence resonance energy transfer assay to probe how Hfq modulates the interaction between a sRNA, DsrA, and its regulatory target mRNA, rpoS. The relevant RNA fragments were labelled so that changes in intra- and intermolecular RNA structures can be monitored in real time. Our data show that Hfq promotes the strand exchange reaction in which the internal structure of rpoS is replaced by pairing with DsrA such that the Shine-Dalgarno sequence of the mRNA becomes exposed. Hfq appears to carry out strand exchange by inducing rapid association of DsrA and a premelted rpoS and by aiding in the slow disruption of the rpoS secondary structure. Unexpectedly, Hfq also disrupts a preformed complex between rpoS and DsrA. While it may not be a frequent event in vivo, this melting activity may have implications in the reversal of sRNA-based regulation. Overall, our data suggests that Hfq not only promotes strand exchange by binding rapidly to both DsrA and rpoS but also possesses RNA chaperoning properties that facilitates dynamic RNA-RNA interactions.  相似文献   

15.
Small regulatory RNA (sRNA) is a unique noncoding RNA involved in regulation of gene expression in both eukaryotic and bacterial cells. This short review discusses examples of positive and negative translation regulation by sRNAs in bacteria and participation of Hfq in these processes. The importance of structure investigation of nucleotide–protein and RNA–protein complexes for designing a model of Hfq interaction with both mRNA and sRNA simultaneously is demonstrated.  相似文献   

16.
Small RNAs (sRNAs) regulate bacterial genes involved in environmental adaptation. This RNA regulation requires Hfq, a bacterial Sm-like protein that stabilizes sRNAs and enhances RNA-RNA interactions. To understand the mechanism of target recognition by sRNAs, we investigated the interactions between Hfq, the sRNA DsrA, and its regulatory target rpoS mRNA, which encodes the stress response sigma factor. Nuclease footprinting revealed that Hfq recognized multiple sites in rpoS mRNA without significantly perturbing secondary structure in the 5' leader that inhibits translation initiation. Base-pairing with DsrA, however, made the rpoS ribosome binding site fully accessible, as predicted by genetic data. Hfq bound DsrA four times more tightly than the DsrA.rpoS RNA complex in gel mobility-shift assays. Consequently, Hfq is displaced rapidly from its high-affinity binding site on DsrA by conformational changes in DsrA, when DsrA base-pairs with rpoS mRNA. Hfq accelerated DsrA.rpoS RNA association and stabilized the RNA complex up to twofold. Hybridization of DsrA and rpoS mRNA was optimal when Hfq occupied its primary binding site on free DsrA, but was inhibited when Hfq associated with the DsrA.rpoS RNA complex. We conclude that recognition of rpoS mRNA is stimulated by binding of Hfq to free DsrA sRNA, followed by release of Hfq from the sRNA.mRNA complex.  相似文献   

17.
18.
The Sm-like protein Hfq is required for gene regulation by small RNAs (sRNAs) in bacteria and facilitates base pairing between sRNAs and their mRNA targets. The proximal and distal faces of the Hfq hexamer specifically bind sRNA and mRNA targets, but they do not explain how Hfq accelerates the formation and exchange of RNA base pairs. Here, we show that conserved arginines on the outer rim of the hexamer that are known to interact with sRNA bodies are required for Hfq’s chaperone activity. Mutations in the arginine patch lower the ability of Hfq to act in sRNA regulation of rpoS translation and eliminate annealing of natural sRNAs or unstructured oligonucleotides, without preventing binding to either the proximal or distal face. Stopped-flow FRET and fluorescence anisotropy show that complementary RNAs transiently form a ternary complex with Hfq, but the RNAs are not released as a double helix in the absence of rim arginines. RNAs bound to either face of Hfq quench the fluorescence of a tryptophan adjacent to the arginine patch, demonstrating that the rim can simultaneously engage two RNA strands. We propose that the arginine patch overcomes entropic and electrostatic barriers to helix nucleation and constitutes the active site for Hfq’s chaperone function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号