首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipid exchange activity in developing rat brain   总被引:2,自引:0,他引:2  
Phospholipid exchange activity has been determined in the supernatant fraction of rat brain from birth through to maturity by measuring the protein-catalysed transfer of total and individual 32P-labelled phospholipids from microsomal membranes to mitochondria, and the transfer of [14C]phosphatidylcholine from liposomes to mitochondria. Transfer activity has also been compared in brain and liver supernatant. Overall phospholipid exchange activity in the brain increased only slightly with age. The activity at birth was 75% of the adult value. However, the transfer of individual phospholipids showed markedly different trends during postnatal brain development. The transfer of phosphatidylinositol (PI) and ethanolamine phospholipids increased postnatally to a maximum at 9 days of age, with lowest values in adult brain. Phosphatidylcholine (PC) transfer increased from 9 days to reach maximum values in the mature brain. The transfer of sphingomyelin was highest immediately after birth. PI transfer activity was higher in brain than liver, while PC and ethanolamine phospholipid transfer activity was higher in liver. The heterogeneity of phospholipid exchange proteins in central nervous system tissue is reflected in the developmental changes in exchange activity towards individual phospholipids. The various exchange proteins appear to have separate induction mechanisms. The presence of exchange-protein activity from birth in the rat indicates the functional importance of phospholipid transport during cell acquisition and membrane proliferation. Activity is not primarily associated with membrane formation such as the formation of the myelin sheath, and therefore is more likely to be involved in the process of phospholipid turnover.  相似文献   

2.
The concentration and composition of phospholipids and mitotic activity in regenerating rat liver were studied. (1) The total amount of liver phospholipid increased approximately linearly during 48h after operation but without change in the relative concentrations of individual phospholipids. (2) The appearance of mitoses 30h after operation was accompanied by an increased incorporation of (32)P into the liver phospholipids. (3) The regenerating livers incorporated a higher percentage of the label into the phosphatidylserine+phosphatidylinositol fraction than those of control rats. The percentage of the label incorporated into phosphatidylethanolamine in these livers increased but decreased in the phosphatidylcholine.  相似文献   

3.
The lipid dependence of pyrophosphatase activity was studied by treatment of liver and hepatoma microsomes with phospholipase C from Cl. perfringens and B. cereus and a subsequent incorporation of various classes of phospholipids into the delipidated microsomes. Phospholipase C hydrolysis sharply lowers the pyrophosphatase activity of liver and hepatoma microsomes. The enzyme activity is restored after introduction of phospholipids into delipidated liver microsomes, the maximal effect being achieved on incorporation of phosphatidylcholine. All the phospholipids tested exerted the same reactivation effects on the delipidated microsomes of hepatoma. However, a more complete delipidation of hepatoma microsomes by phospholipase C hydrolysis and a subsequent organic solvent extraction revealed a specific dependence of the enzyme activity on phosphatidylserine.  相似文献   

4.
The metabolism of liver nuclear phospholipid acyl components of rats of various age was studied in vitro. It was found that the activity of phospholipases A1 and A2 in the nuclei sharply increased in animals aged 1-3 months, showing a decrease in 12- and 24-month-old animals. The incorporation of labeled arachidonic acid into nuclear phospholipids remained practically unchanged thereby. The age-specific fluctuations in the activity of nuclear phospholipids A1 and A2 may be one of possible reasons of changes in the fatty acid composition of nuclear lipids during ontogenesis.  相似文献   

5.
Unmitigated oxidative stress is deleterious, as epitomized by CCl4 intoxication. In this well-characterized model of free radical-initiated damage, liver metabolism of CCl4 to CCl3. causes lipid peroxidation, F-ring isoprostane formation, and pathologic leukocyte activation. The nature of the mediator that couples oxidation to the hepatotoxic inflammatory response is uncharacterized. We found that oxidatively modified phosphatidylcholines were present in the livers of CCl4-exposed rats and not in livers from control animals, that CCl4 metabolism generated lipids that activated 293 cells stably transfected with the human platelet-activating factor (PAF) receptor, and that this PAF-like activity was formed as rapidly as isoprostane-containing phosphatidylcholine (iPC) during oxidation. iPC and the PAF-like activity also had similar chromatographic properties. The potential for iPC activation of the PAF receptor has been unexplored, but we conclude that iPC themselves did not activate the PAF receptor, as phospholipase A1 hydrolysis completely destroyed iPC, but none of the PAF-like bioactivity. Oxidatively fragmented phospholipids are potent agonists of the PAF receptor, but mass spectrometry characterized PAF as the major inflammatory component coeluting with iPC. Oxidatively fragmented phospholipids and iPC are markers of free radical generation in CCl4-intoxicated liver, but PAF generation by activated hepatic cells generated the inflammatory agent.  相似文献   

6.
Sclerin (SCL) stimulated the oxidation and the incorporation into the phospholipids of Na-[1-14C]-oleate in mitochondria isolated from rat liver, preventing the depression of the phosphorylating functions and protecting 2,4-dinitrophenol (DNP)-activated ATPase in mitochondria during incubation with oleate. Also, SCL markedly enhanced the activity of phospholipase to hydrolyze endogenous substrates in mitochondria. The increase in the activity was due to reconstruction of phospholipids through esterification of oleate in mitochondrial membrane, but not to the de novo enzyme synthesis. It was concluded that the level of endogenous phospholipase in mitochondria during incubation reflects the energy- dependent reacylation of the lysophospholipids produced by the action of phospholipase in mitochondrial membrane.  相似文献   

7.
The membrane bound (Na,K)-ATPase prepared from Artemia salina nauplii was solubilized with a zwitterionic detergent, 3[3(cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), and then purified on a Bio-Gel A-1.5 m column in the presence of the detergent. 1) Upon solubilization, both NaCl and KCl protected the enzyme against loss of activity, KCl being more effective than NaCl. 2) Gel filtration of the solubilized enzyme on a Bio-Gel A-1.5 m column in the presence of 5 mM CHAPS resulted in loss of the enzyme activity even when one of the cations was added. Most of the phospholipids in the solubilized enzyme preparation were removed during the gel filtration (delipidation) and 10-25 phospholipids were left on a protomer (alpha beta) of the enzyme irrespective of the cation present during the gel filtration. With the addition of exogenous phospholipids, the activity was restored. The activity of the enzyme delipidated in the presence of KCl was restored to 3-4 times higher than in the case of that delipidated in the presence of NaCl. 3) Relipidation experiments with a fluorescent phospholipid, dansyl phosphatidylethanolamine (Dans-PE), suggested that the enzyme delipidated in the presence of KCl reassociated with phospholipids more firmly than the enzyme delipidated in the presence of NaCl. From these results we concluded that K+ stabilized the (Na,K)-ATPase more effectively than Na+, even when the enzyme was delipidated.  相似文献   

8.
The aim of the present study was to examine the effect of triiodothyronine (T3) on the content of phospholipids and on the incorporation of blood-borne palmitic acid into the phospholipid moieties in the nuclei of the rat liver. T3 was administered daily for 7 days, 10 microg x 100 g(-1). The control rats were treated with saline. Each rat received 14C-palmitic acid, intravenously suspended in serum. 30 min after administration of the label, samples of the liver were taken. The nuclei were isolated in sucrose gradient. Phospholipids were extracted from the nuclei fraction and from the liver homogenate. They were separated into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine and cardiolipin. The content and radioactivity of each fraction was measured. It was found that treatment with T3 reduced the content of phosphatidylinositol and increased the content of cardiolipin in the nuclear fraction. In the liver homogenate, the content of phosphatidylinositol decreased and the content of phosphatidylethanolamine and cardiolipin increased after treatment with T3. The total content of phospholipids after treatment with T3 remained unchanged, both in the nuclear fraction and in the liver homogenate. T3 reduced the specific activity of phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and cardiolipin and had no effect on the specific activity of sphingomyelin and phosphatidylinositol both in the fraction of the nuclei and the liver homogenate. It is concluded that excess of triiodothyronine affects the content of phospholipids in the nuclei. The changes in the content of phospholipids in the nuclei largely reflect changes in their content in the liver.  相似文献   

9.
The lipolytic activities of mitochondrial and microsomal fractions ('microsomes') isolated from foetal, suckling and adult rat liver were compared. The catabolism of endogenous phospholipids was followed by measuring the loss of phospholipids and the appearance of non-esterified fatty acids and lysophosphatides. The rate of mitochondrial phospholipid catabolism does not change significantly during development, but the rate of lipolysis of microsomal phospholipids increases 3-fold during development. Balance studies showed that, in mitochondria and microsomes of foetal, suckling and adult rat liver, fatty acid formation is greatly in excess of the fatty acids that can be accounted for by measuring phospholipid disappearance and lysophosphatide appearance. The hypothesis that this excess fatty acid formation resulted from the lipolysis of mitochondrial and microsomal triacylglycerols were tested and confirmed by preliminary experiments. Mitochondria and microsomes isolated from all developmental ages investigated had phospholipases with A1 and A2 activities. The degree of unsaturation of the fatty acids derived from the phospholipids of mitochondria did not vary significantly during development.  相似文献   

10.
It has been shown for the first time that lysosomal (tritosomal) membranes of rat liver contain enzymes that are responsible for the deacylation-reacylation of phospholipids; their activity optimum lies at pH 7.0. Deacylation of lysosomal membrane phospholipids is controlled by a cascade of enzymatic reactions involving Ca2(+)-dependent phospholipase A1 which exhibits the maximal activity at 2.5 mM Ca2+ and at neutral values of pH, as well as lysophospholipase. Reacylation of lyso-derivatives of phospholipids is catalyzed by Mg2(+)-activated oleoyl-CoA:lysophosphatidylcholine acyltransferase having an activity optimum at pH 7.2.  相似文献   

11.
The beneficial effects obtained with dehydroisoandrosterone (DHA) feeding in the treatment of murine systemic lupus erythematosus are similar to those obtained with caloric restriction or with dietary manipulation of essential fatty acid availability. In this study, the fatty acid composition of selected tissues was examined in NZB/W F1 mice fed a diet containing 0.4% DHA. The effect of the DHA diet on liver composition and the activity of key hepatic enzymes involved in fatty acid synthesis and glucose metabolism was also investigated. The content of the essential fatty acid, arachidonate, was decreased in plasma cholesteryl esters and liver and kidney phospholipids in mice fed the DHA diet, yet no significant decrease in arachidonate content was observed in plasma phospholipid. The most striking change in both plasma and liver phospholipid was an increase in palmitic acid and a decrease in stearic acid, which could result from a decreased ability for fatty acid elongation. The liver mass was dramatically increased in the mice fed DHA, primarily from parenchymal cell hypertrophy, and contained little lipid. Significant changes in the activities of malic enzyme, glucose-6-phosphate dehydrogenase and pyruvate kinase, similar to those changes which occur with fasting, were observed during the initial adaptation to the DHA diet. The pyruvate kinase activity remained low, suggesting a decrease in liver glycolysis. These results are consistent with the concept that diets containing DHA result in an altered metabolism with a decreased dependence on carbohydrate metabolism and an increased metabolism of lipids.  相似文献   

12.
Very extensive hydrolysis of phospholipids with pure Bacillus cereus phospholipase C at 5 degrees C greatly inhibited the maximum demonstrable rate of glucuronidation of p-nitrophenol by UDPglucuronyltransferase in guinea pig liver microsomes. Lysophosphatidylcholine restored much of the inhibited activity but non-phospholipid surfactants or hydrolysis of diglycerides failed to reactivate. Phospholipid depletion likewise inhibited o-aminophenol glucuronidation and phospholipids restored activity. It is concluded that glucuronyltransferase specifically requires phospholipids for optimal activity. It seems unlikely that these phospholipids only serve to dissolve aglycones, or that they are direct physiological regulators of the transferase. Instead, a permissive role is ascribed to phospholipids, allowing glucuronyltransferase to be regulated by other means.  相似文献   

13.
Dilauroylphosphatidylcholine caused a marked increase in progesterone 5 alpha-reductase activity solubilized from rat liver microsomes, whereas naturally occurring phosphatidylcholines from biological sources as well as dioleoylphosphatidylcholine had not effect on the activity. Therefore, the stimulatory effect of phospholipids normally found in rat liver microsomes was examined. The lipid extracts were prepared from the fraction which was freed from 5 alpha-reductase activity by DEAE-cellulose chromatography, and found to exhibit a strong stimulatory effect. The lipid extracts were then separated into phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine by chromatography on silicic acid column and preparative thin-layer plate. Among these endogenous phospholipids, only phosphatidylserine stimulated the 5 alpha-reductase, suggesting that the lipid requirement is specific for phosphatidylserine in steroid 5 alpha-reductase from liver microsomes.  相似文献   

14.
The absorption and transport of the base moieties of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) which were fed to rats were compared. The major absorption site of ethanolamine-labeled PE was proximal jejunum while choline-labeled PC was absorbed almost equally throughout the jejunum. Lysophospholipids, glycerophosphoryl bases and constituent bases were the main digested products in intestinal content. This shows that base-labeled phospholipids were hydrolyzed to water-soluble products as well as lysophospholipids before absorption. The radioactivities from both phospholipids existed mainly in their parent phospholipids and water-soluble products in the intestinal mucosa. The amounts of lymphatic transport of the radioactivities from choline-labeled PC and ethanolamine-labeled PE were 17% and 8%, respectively, at 8 h after administration. The liver in lymph-cannulated rats contained 23% and 48% radioactivity from PC and PE, respectively, suggesting that base moieties of phospholipids, especially PE, were transported mainly via a non-lymphatic route, probably the portal vein, to the liver, as water-soluble products. The radioactivity from both base-labeled phospholipids in the liver was distributed in the parent phospholipids and water-soluble fractions. Ethanolamine-labeled PE was also incorporated into PC in the liver. These results indicate that intestinal absorption and transport of the base moiety of dietary PC and PE are similar; however, their intestinal absorption site and the extent of their separation during transport between the lymphatic and portal systems differ markedly.  相似文献   

15.
F. Feo  R.A. Canuto  R. Garcea  O. Brossa 《BBA》1978,504(1):1-14
The phospholipid depletion of rat liver mitochondria, induced by acetone-extraction or by digestion with phospholipase A2 or phospholipase C, greatly inhibited the activity of NADH-cytochrome c reductase (rotenone-insensitive). A great decrease of the reductase activity also occurred in isolated outer mitochondrial membranes after incubation with phospholipase A2. The enzyme activity was almost completely restored by the addition of a mixture of mitochondrial phospholipids to either lipid-deficient mitochondria, or lipid-deficient outer membranes. The individual phospholipids present in the outer mitochondrial membrane induced little or no stimulation of the reductase activity. Egg phosphatidylcholine was the most active phospholipid, but dipalmitoyl phosphatidylcholine was almost ineffective. The lipid depletion of mitochondria resulted in the disappearance of the non-linear Arrhenius plot which characterized the native reductase activity. A non-linear plot almost identical to that of the native enzyme was shown by the enzyme reconstituted with mitochondrial phospholipids. Triton X-100, Tween 80 or sodium deoxycholate induced only a small activation of NADH-cytochrome c reductase (rotenone-insensitive) in lipiddeficient mitochondria. The addition of cholesterol to extracted mitochondrial phospholipids at a 1 : 1 molar ratio inhibited the reactivation of NADH-cytochrome c reductase (rotenone-insensitive) but not the binding of phospholipids to lipid-deficient mitochondria or lipid-deficient outer membranes.These results show that NADH-cytochrome c reductase (rotenone-insensitive) of the outer mitochondrial membrane requires phospholipids for its activity. A mixture of phospholipids accomplishes this requirement better than individual phospholipids or detergents. It also seems that the membrane fluidity may influence the reductase activity.  相似文献   

16.
Purification and characterization of endogenous lipid factors that stimulate rat liver lysosomal lipase has led to the identification of cardiolipin, phosphatidylserine, and phosphatidic acid as stimulators of this activity. Bovine heart cardiolipin (half-maximal stimulation at 1.5 x 10(-4) m) and bovine brain phosphatidylserine (half-maximal stimulation at 9.5 x 10(-4) m) were the most potent of the phospholipids from other sources tested. The major rate-enhancing effect of phosphatidylserine is expressed as a 35-fold increase in the apparent V(max) of the enzyme. The effect is produced by acid phospholipids specifically, since in no case was there greater than a twofold stimulation by synthetic detergents, zwitterionic phospholipids, taurocholic acid, or gum acacia. The observed degree of stimulation depends upon the detergent used to disperse tripalmitin substrate and the relative concentrations of factor and detergent in reaction mixtures. The concentration of phosphatidylserine to produce half-maximal stimulation is directly dependent upon the Triton X-100 concentration, but the effects of this detergent on cardiolipin stimulation are more complex. Enzyme activity is inhibited 50% by 1 mm nucleoside triphosphate and 2.5 mm ADP, 80% by 1 mm PP(i), 100% by 20 U/ml heparin and 0.25 mg/ml chondroitin sulfate, and 80% by 10 mm sulfate ion. Inhibition is partially prevented by phosphatidylserine.  相似文献   

17.
The presence of a phospholipid fraction associated with chromatin has been demonstrated by biochemical technique in rat hepatocytes. The composition of this fraction determined by chromatography with respect to that of the nuclei is characterized by low content of phosphatidylserine and high content in phosphatidylethanolamine. Also the synthesis and turnover studied after injection of [32P]O4(2-) show a different behaviour: the peak of activity is after 6 hrs in nuclei and microsomes, whereas in chromatin it occurs after 9 hrs. A second peak is evident after 24 hrs in chromatin and microsome phospholipids. Differences have been also shown by analyzing the single phospholipid radioactivity in time. The behaviour of chromatin phospholipids has also been studied during DNA premitotic synthesis in regenerating liver. It has been shown that there is no difference in synthesis in relation to that of DNA in nuclear phospholipids, whereas the specific activity of chromatin phospholipids begins to increase twelve hours after hepatectomy and continues throughout the period of the first mitotic wave, thus bringing to a summation with the beginning of the second wave. The role of this phospholipid fraction in relation to DNA synthesis and gene expression is discussed.  相似文献   

18.
The total lipid contents of muscle, the liver somatic index and the total lipid contents of actomyosin in hakes changed with the gonadal condition of the fish. Non-polar lipids in actomyosin from pre-spawned hake were 145% higher than in actomyosin from post-spawned hake; polar lipids were 30% higher. The relative percentage of phospholipids changed from 32% in pre-spawned hake to 48% in post-spawned hake. The Mg2+-ATPase activity in actomyosin increased from the pre-spawned to the post-spawned conditions, and this could be related to a higher phospholipids to neutral lipids ratio in post-spawned hake. Gradual decreases in both Ca2+-ATPase activity and myosin: actin ratio during the gonadal development of fish were found, suggesting a partial loss of myosin functionality of the actomyosin complex.  相似文献   

19.
It was discovered that there is sphingomyelinase activity in the rat liver nuclei. The maximum of enzyme activity is at pH 7.1. The data obtained demonstrated that the main part of sphingomyelinase is located in the nuclear membrane. Comparison of sphingomyelinase activity in cell nuclei, liver and brain homogenates shows high level of enzyme activity in the nuclei. The authors discuss possible participation of sphingomyelinases in changes of phospholipids composition in nuclear structure under different functional activity of cell nuclei.  相似文献   

20.
Rats were given a cod liver oil supplemented diet and a standard diet for 4 months. The cod liver oil supplementation resulted in a marked increase in the 20:5(n-3) and 22:6(n-3) fatty acids and a marked decrease in the 20:4(n-6) fatty acid in phosphatidylcholine and ethanolamine of the atrial membrane. Atria from the cod liver oil treated rats showed a marked decrease in contractile force, heart rate and cyclic AMP (cAMP) levels under basal conditions. Stimulation with noradrenaline (1 X 10(-6) M) during high oxygen saturation and reoxygenation resulted in an equal increase in the mechanical responses of the two groups in spite of the significantly different levels of cAMP, whereas in hypoxia, both the cAMP level and the contractile force were significantly lower in the cod liver oil treated group. These results indicate that changes in the fatty acid composition of heart membrane phospholipids is associated with changes in adenylate cyclase activity and physiological function of the rat heart and that an increase in the n-3/n-6 fatty acid ratio in membrane phospholipids of the heart results, when oxygen is abundant in enhanced cAMP-independent contractile activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号