首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Guard cells are electrically isolated from other plant cells and therefore offer the unique possibility to conduct current- and voltage-clamp recordings on single cells in an intact plant. Guard cells in their natural environment were impaled with double-barreled electrodes and found to exhibit three physiological states. A minority of cells were classified as far-depolarized cells. These cells exhibited positive membrane potentials and were dominated by the activity of voltage-dependent anion channels. All other cells displayed both outward and inward rectifying K+-channel activity. These cells were either depolarized or hyperpolarized, with average membrane potentials of -41 mV (SD 16) and -112 mV (SD 19), respectively. Depolarized guard cells extrude K+ through outward rectifying channels, while K+ is taken up via inward rectifying channels in hyperpolarized cells. Upon a light/dark transition, guard cells that were hyperpolarized in the light switched to the depolarized state. The depolarization was accompanied by a 35 pA decrease in pump current and an increase in the conductance of inward rectifying channels. Both an increase in pump current and a decrease in the conductance of the inward rectifier were triggered by blue light, while red light was ineffective. From these studies we conclude that light modulates plasma membrane transport through large membrane potential changes, reversing the K+-efflux via outward rectifying channels to a K+-influx via inward rectifying channels.  相似文献   

2.
In the light of stomatal opening: new insights into 'the Watergate'   总被引:1,自引:0,他引:1  
Stomata can be regarded as hydraulically driven valves in the leaf surface, which open to allow CO2 uptake and close to prevent excessive loss of water. Movement of these 'Watergates' is regulated by environmental conditions, such as light, CO2 and humidity. Guard cells can sense environmental conditions and function as motor cells within the stomatal complex. Stomatal movement results from the transport of K+ salts across the guard cell membranes. In this review, we discuss the biophysical principles and mechanisms of stomatal movement and relate these to ion transport at the plasma membrane and vacuolar membrane. Studies with isolated guard cells, combined with recordings on single guard cells in intact plants, revealed that light stimulates stomatal opening via blue light-specific and photosynthetic-active radiation-dependent pathways. In addition, guard cells sense changes in air humidity and the water status of distant tissues via the stress hormone abscisic acid (ABA). Guard cells thus provide an excellent system to study cross-talk, as multiple signaling pathways induce both short- and long-term responses in these sensory cells.  相似文献   

3.
Guard cells respond to light through two independent signalling pathways. The first pathway is initiated by photosynthetically active radiation and has been associated with changes in the intercellular CO(2) concentration, leading to inhibition of plasma membrane anion channels. The second response is blue-light-specific and so far has been restricted to the activation of plasma membrane H(+)-ATPases. In a search for interactions of both signalling pathways, guard cells of Vicia faba and Arabidopsis thaliana were studied in intact plants. Vicia faba guard cells recorded in CO(2)-free air responded to blue light with a transient outward plasma membrane current that had an average peak value of 17 pA. In line with previous reports, changes in the current-voltage relation of the plasma membrane indicate that this outward current is based on the activation of H(+)-ATPases. However, when V. faba guard cells were blue-light-stimulated in air with 700 microl l(-1) CO(2), the outward current increased to 56 pA. The increase in current was linked to inhibition of S-type anion channels. Blue light also inhibited plasma membrane anion channels in A. thaliana guard cells, but not in the phot1 phot2 double mutant. These results show that blue light inhibits plasma membrane anion channels through a pathway involving phototropins, in addition to the stimulation of guard cell plasma membrane H(+)-ATPases.  相似文献   

4.
During drought, the plant hormone abscisic acid (ABA) induces rapid stomatal closure and in turn reduces transpiration. Stomatal closure is accompanied by large ion fluxes across the plasma membrane, carried by K+ and anion channels. We recorded changes in the activity of these channels induced by ABA, for guard cells of intact Vicia faba plants. Guard cells in their natural environment were impaled with double-barrelled electrodes, and ABA was applied via the leaf surface. In 45 out of 85 cells tested, ABA triggered a transient depolarization of the plasma membrane. In these cells, the membrane potential partially recovered in the presence of ABA; however, a full recovery of the membrane potentials was only observed after removal of ABA. Repetitive ABA responses could be evoked in single cells, but the magnitude of the response varied from one hormone application to the other. The transient depolarization correlated with the activation of anion channels, which peaked 5 min after introduction of the stimulus. In guard cells with a moderate increase in plasma membrane conductance (DeltaG < 5 nS), ABA predominantly activated voltage-independent (slow (S)-type) anion channels. During strong responses (DeltaG > 5 nS), however, ABA activated voltage-dependent (rapid (R)-type) in addition to S-type anion channels. We conclude that the combined activation of these two channel types leads to the transient depolarization of guard cells. The nature of this ABA response correlates with the transient extrusion of Cl- from guard cells and a rapid but confined reduction in stomatal aperture.  相似文献   

5.
The apoplastic pH of guard cells probably acidifies in response to light, since light induces proton extrusion by both guard cells and epidermal leaf cells. From the data presented here, it is concluded that these apoplastic pH changes will affect K+ fluxes in guard cells of Arabidopsis thaliana (L.) Heynh. Guard cells of this species were impaled with double-barrelled microelectrodes, to measure the membrane potential (Em) and the plasma-membrane conductance. Guard cells were found to exhibit two states with respect to their Em, a depolarized and a hyperpolarized state. Apoplastic acidification depolarized Em in both states, though the origin of the depolarization differed for each state. In the depolarized state, the change in Em was the result of a combined pH effect on instantaneously activating conductances and on the slow outward rectifying K+ channel (s-ORC). At a more acidic apoplastic pH, the current through instantaneously activated conductances became more inwardly directed, while the maximum conductance of s-ORC decreased. The effect on s-ORC was accompanied by an acceleration of activation and deactivation of the channel. Experiments with acid loading of guard cells indicated that the effect on s-ORC was due to a lowered intracellular pH, caused by apoplastic acidification. In the hyperpolarized state, the pH-induced depolarization was due to a direct effect of the apoplastic pH on the inward rectifying K+ channel. Acidification shifted the threshold potential of the channel to more positive values. This effect was accompanied by a decrease in activation times and an increase of deactivation times, of the channel. From the changes in Em and membrane conductance, the expected effect of acidification on K+ fluxes was calculated. It was concluded that apoplastic acidification will increase the K+-efflux in the depolarized state and reduce the K+-influx in the hyperpolarized state. Received: 28 April 1997 / Accepted: 10 November 1997  相似文献   

6.
Stomatal openings can be stimulated by light through two signalling pathways. The first pathway is blue light specific and involves phototropins, while the second pathway mediates a response to photosynthetically active radiation (PAR). This second pathway was studied with the use of albino Vicia faba plants and variegated leaves of Chlorophytum comosum. Treatment of V. faba with norflurazon (Nf) inhibits the synthesis of carotenoids and leads to albino leaves with guard cells that lack functional green chloroplasts. Guard cells in albino leaf patches of C. comosum, however, do contain photosynthetically active chloroplasts. Stomata in albino leaf patches of both plants did not respond to red light, although blue light could still induce stomatal opening. This shows that the response to PAR is not functioning in albino leaf patches, even though guard cells of C. comosum harbour chloroplasts. Stomata of Nf-treated plants still responded to CO2 and abscisic acid (ABA). The size of Nf-treated guard cells was increased, but impalement studies with double-barrelled microelectrodes revealed no changes in ion-transport properties at the plasma membrane of guard cells. Blue light could hyperpolarize albino guard cells by triggering outward currents with peak values of 37 pA in albino plants and 51 pA in green control cells. Because of the inhibition of carotenoid biosynthesis, Nf-treated V. faba plants contained only 4% of the ABA content found in green control plants. The ABA dose dependence of anion channel activation in guard cells was shifted in these plants, causing a reduced response to 10 microM ABA. These data show that despite the dramatic changes in physiology caused by Nf, the gross responsiveness of guard cells to blue light, CO2 and ABA remains unaltered. Stomata in albino leaf patches, however, do not respond to PAR, but require photosynthetically active mesophyll cells for this response.  相似文献   

7.
Cytoplasmic calcium elevations, transients, and oscillations are thought to encode information that triggers a variety of physiological responses in plant cells. Yet Ca(2+) signals induced by a single stimulus vary, depending on the physiological state of the cell and experimental conditions. We compared Ca(2+) homeostasis and stimulus-induced Ca(2+) signals in guard cells of intact plants, epidermal strips, and isolated protoplasts. Single-cell ratiometric imaging with the Ca(2+)-sensitive dye Fura 2 was applied in combination with electrophysiological recordings. Guard cell protoplasts were loaded with Fura 2 via a patch pipette, revealing a cytoplasmic free Ca(2+) concentration of around 80 nM at -47 mV. Upon hyperpolarization of the plasma membrane to -107 mV, the Ca(2+) concentration increased to levels exceeding 400 nM. Intact guard cells were able to maintain much lower cytoplasmic free Ca(2+) concentrations at hyperpolarized potentials, the average concentration at -100 mV was 183 and 90 nM in epidermal strips and intact plants, respectively. Further hyperpolarization of the plasma membrane to -160 mV induced a sustained rise of the guard cell cytoplasmic Ca(2+) concentration, which slowly returned to the prestimulus level in intact plants but not in epidermal strips. Our results show that cytoplasmic Ca(2+) concentrations are stringently controlled in guard cells of intact plants but become increasingly more sensitive to changes in the plasma membrane potential in epidermal strips and isolated protoplasts.  相似文献   

8.
Effects of CO2 on stomatal movements of Commelina communis L. were studied with plants, epidermal strips and guard cell protoplasts. With plants, the stomatal response induced by a blue light pulse was studied for different ambient CO2 concentration ranging from CO2-deprived air to 100 Pa in darkness or under red light. It was observed that the blue light response could be obtained not only under a red light background but also in darkness and CO2-free air, the two responses being quite similar.
With epidermal strips, the effect of CO2 on ferricyanide reductase activity at the guard cell plasmalemma was studied by transmission electron microscopy. In the presence of ferric ions, reduced ferricyanide gives an electron dense precipitate of Prussian Blue. In darkness and air, no precipitate was observed. In darkness and CO2-free air as well as under light and normal air, a precipitate was found along the plasmalemma of the guard cells, indicating a ferricyanide reductase activity. With guard cell protoplasts suspended in a medium either in equilibrium with air or in a CO2-free medium the H+ extrusion induced by a blue light pulse added to a red light background was measured. A low CO2 content was obtained by adding photosynthetic algae to the suspension of guard cell protoplasts. In a CO2-free medium the rate of H+ extrusion was enhanced.
The results are discussed on the basis of a possible competition for reducing power between CO2 fixation and a putative blue light dependent redox chain located on the plasma membrane.  相似文献   

9.
To gain insights into the performance of poplar guard cells, we have measured stomatal conductance and aperture, guard cell K+ content and K+-channel activity of the guard cell plasma membrane in intact poplar leaves. In contrast to Arabidopsis, broad bean and tobacco grown under same conditions, poplar stomata operated just in the dynamic range - any change in conductance altered the rate of photosynthesis. In response to light, CO2 and abscisic acid (ABA), the stomatal opening velocity was two to five times faster than that measured for Arabidopsis thaliana, Nicotiana tabacum and Vicia faba. When stomata opened, the K+ content of guard cells increased almost twofold, indicating that the very fast stomatal opening in this species is mediated via potassium uptake. Following impalement of single guard cells embedded in their natural environment of intact leaves with triple-barrelled microelectrodes, time-dependent inward and outward-rectifying K+-channel-mediated currents of large amplitude were recorded. To analyse the molecular nature of genes encoding guard cell K+-uptake channels, we cloned K+-transporter Populustremula (KPT)1 and functionally expressed this potassium channel in a K+-uptake-deficient Escherichia coli mutant. In addition to guard cells, this K+-transporter gene was expressed in buds, where the KPT1 gene activity strongly correlated with bud break. Thus, KPT1 represents one of only few poplar genes associated with bud flush.  相似文献   

10.
Rapid stomatal closure is driven by the activation of S‐type anion channels in the plasma membrane of guard cells. This response has been linked to Ca2+ signalling, but the impact of transient Ca2+ signals on S‐type anion channel activity remains unknown. In this study, transient elevation of the cytosolic Ca2+ level was provoked by voltage steps in guard cells of intact Nicotiana tabacum plants. Changes in the activity of S‐type anion channels were monitored using intracellular triple‐barrelled micro‐electrodes. In cells kept at a holding potential of ?100 mV, voltage steps to ?180 mV triggered elevation of the cytosolic free Ca2+ concentration. The increase in the cytosolic Ca2+ level was accompanied by activation of S‐type anion channels. Guard cell anion channels were activated by Ca2+ with a half maximum concentration of 515 nm (SE = 235) and a mean saturation value of ?349 pA (SE = 107) at ?100 mV. Ca2+ signals could also be evoked by prolonged (100 sec) depolarization of the plasma membrane to 0 mV. Upon returning to ?100 mV, a transient increase in the cytosolic Ca2+ level was observed, activating S‐type channels without measurable delay. These data show that cytosolic Ca2+ elevation can activate S‐type anion channels in intact guard cells through a fast signalling pathway. Furthermore, prolonged depolarization to 0 mV alters the activity of Ca2+ transport proteins, resulting in an overshoot of the cytosolic Ca2+ level after returning the membrane potential to ?100 mV.  相似文献   

11.
Doi M  Shimazaki K 《Plant physiology》2008,147(2):922-930
The stomata of the fern Adiantum capillus-veneris lack a blue light-specific opening response but open in response to red light. We investigated this light response of Adiantum stomata and found that the light wavelength dependence of stomatal opening matched that of photosynthesis. The simultaneous application of red (2 micromol m(-2) s(-1)) and far-red (50 micromol m(-2) s(-1)) light synergistically induced stomatal opening, but application of only one of these wavelengths was ineffective. Adiantum stomata did not respond to CO2 in the dark; the stomata neither opened under a low intercellular CO2 concentration nor closed under high intercellular CO2 concentration. Stomata in Arabidopsis (Arabidopsis thaliana), which were used as a control, showed clear sensitivity to CO2. In Adiantum, stomatal conductance showed much higher light sensitivity when the light was applied to the lower leaf surface, where stomata exist, than when it was applied to the upper surface. This suggests that guard cells likely sensed the light required for stomatal opening. In the epidermal fragments, red light induced both stomatal opening and K+ accumulation in guard cells, and both of these responses were inhibited by a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The stomatal opening was completely inhibited by CsCl, a K+ channel blocker. In intact fern leaves, red light-induced stomatal opening was also suppressed by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results indicate that Adiantum stomata lack sensitivity to CO2 in the dark and that stomatal opening is driven by photosynthetic electron transport in guard cell chloroplasts, probably via K+ uptake.  相似文献   

12.
In guard cells, membrane hyperpolarization in response to a blue light (BL) stimulus is achieved by the activation of a plasma membrane H(+)-ATPase. Using the patch clamp technique on broad bean (Vicia faba) guard cells we demonstrate that both steady-state- and BL-induced pump currents require ATP and are blocked by vanadate perfused into the guard cell during patch clamp recording. Background-pump current and BL-activated currents are voltage independent over a wide range of membrane potentials. During BL-activated responses significant hyperpolarization is achieved that is sufficient to promote K(+) uptake. BL activation of pump current becomes desensitized by three or four pulses of 30 s x 100 micromol m(-2) s(-1) BL. This desensitization is not a result of pump inhibition as maximal responses to fusicoccin are observed after full BL desensitization. BL treatments prior to whole cell recording show that BL desensitization is not due to washout of a secondary messenger by whole cell perfusion, but appears to be an important feature of the BL-stimulated pump response. We found no evidence for an electrogenic BL-stimulated redox chain in the plasma membrane of guard cells as no steady-state- or BL-activated currents are detected with NADH or NADPH added to the cytosol in the absence of ATP. Steady-state- nor BL-activated currents are affected by the inclusion along with ATP of 1 mM NADH in the pipette under saturating red light or by including NADPH in the pipette under darkness or saturating red light. These data suggest that reduced products of photosynthesis do not significantly modulate plasma membrane pump currents and are unlikely to be critical regulators in BL-stimulation of the plasma membrane H(+)-ATPase in guard cells.  相似文献   

13.
W. Moody  E. Zelger 《Planta》1978,139(2):159-165
Intracellular electrical recordings in onion (Allium cepa L.) guard cells show that they maintain a membrane potential difference (MPD), inside negative. The MPD of intact cells averaged -72±29 mV (n=45); MPD of cells partially digested with a cellulolytic enzyme, -39±7 mV (n=65). Evidence indicates that the guard cells have two electrically distinct compartments, presumably delimited by the plasmalemma and tonoplast. Epidermal cells in partially digested preparations also showed MPD that could be either positive (+15±7 mV; n=23) or negative (-15 ±8 mV; n=13). Guard cells exposed to light-dark cycles hyperpolarized in the light and depolarized in the dark. The largest observed voltage changes reached 52 mV during hyperpolarizations and 60 mV during depolarizations. The light responses saturated with roughly exponential kinetics, with the depolarizations exhibiting a slower second phase that might be related to the contracting movements of the guard cells. Initial rates of the responses averaged about 14 mV min-1 in the dark and about 8 mV min-1 in the light. The results can be interpreted as electrical correlates of fluctuations in intracellular potassium concentration, as light-induced changes in membrane permeability, or as the photoactivation of an electrogenic proton pump. The last possibility seems to be the simplest interpretation of the data that also provides us with a mechanism driving the ion fluxes associated with stomatal function.  相似文献   

14.
Suh S  Moran N  Lee Y 《Plant physiology》2000,123(3):833-844
Light-induced leaflet movement of Samanea saman depends on the regulation of membrane transporters in motor cells. Blue light (BL) stimulates leaflet opening by inducing K(+) release from the flexor motor cells. To elucidate the mechanism of K(+)-efflux (K(D))-channel regulation by light, flexor motor cell protoplasts were patch-clamped in a cell-attached configuration during varying illumination. Depolarization elicited outward currents through single open K(D) channels. Changes in cell membrane potential (E(M)) were estimated by applying voltage ramps and tracking the change of the apparent reversal potential of K(D)-channel current. BL shifted E(M) in a positive direction (i.e. depolarized the cell) by about 10 mV. Subsequent red light pulse followed by darkness shifted E(M) oppositely (i.e. hyperpolarized the cell). The BL-induced shifts of E(M) were not observed in cells pretreated with a hydrogen-pump inhibitor, suggesting a contribution by hydrogen-pump to the shift. BL also increased K(D)-channel activity in a voltage-independent manner as reflected in the increase of the mean net steady-state patch conductance at a depolarization of 40 mV relative to the apparent reversal potential (G(@40)). G(@40) increased by approximately 12 pS without a change of the single-channel conductance, possibly by increasing the probability of channel opening. Subsequent red-light and darkness reversed the change in G(@40). Thus, K(+) efflux, a determining factor for the cell-volume decrease of flexor cells, is regulated by BL in a dual manner via membrane potential and by an independent signaling pathway.  相似文献   

15.
Stomatal closing requires the efflux of K+ from the large vacuolar organelle into the cytosol and across the plasma membrane of guard cells. More than 90% of the K+ released from guard cells during stomatal closure originates from the guard cell vacuole. However, the corresponding molecular mechanisms for the release of K+ from guard cell vacuoles have remained unknown. Rises in the cytoplasmic Ca2+ concentration have been shown to trigger ion efflux from guard cells, resulting in stomatal closure. Here, we report a novel type of largely voltage-independent K+-selective ion channel in the vacuolar membrane of guard cells that is activated by physiological increases in the cytoplasmic Ca2+ concentration. These vacuolar K+ (VK) channels had a single channel conductance of 70 pS with 100 mM KCI on both sides of the membrane and were highly selective for K+ over NH4+ and Rb+. Na+, Li+, and Cs+ were not measurably permeant. The Ca2+, voltage, and pH dependences, high selectivity for K+, and high density of VK channels in the vacuolar membrane of guard cells suggest a central role for these K+ channels in the initiation and control of K+ release from the vacuole to the cytoplasm required for stomatal closure. The activation of K+-selective VK channels can shift the vacuolar membrane to more positive potentials on the cytoplasmic side, sufficient to activate previously described slow vacuolar cation channels (SV-type). Analysis of the ionic selectivity of SV channels demonstrated a Ca2+ over K+ selectivity (permeability ratio for Ca2+ to K+ of ~3:1) of these channels in broad bean guard cells and red beet vacuoles, suggesting that SV channels play an important role in Ca2+-induced Ca2+ release from the vacuole during stomatal closure. A model is presented suggesting that the interaction of VK and SV channel activities is crucial in regulating vacuolar K+ and Ca2+ release during stomatal closure. Furthermore, the possibility that the ubiquitous SV channels may represent a general mechanism for Ca2+-induced Ca2+ release from higher plant vacuoles is discussed.  相似文献   

16.
K Liu  S Luan 《The Plant cell》1998,10(11):1957-1970
Guard cell turgor responds to the osmogradient across the plasma membrane and controls the stomatal aperture. Here, we report that guard cells utilize voltage-dependent K+ channels as targets of the osmosensing pathway, providing a positive feedback mechanism for stomatal regulation. When exposed to a hypotonic condition, the inward K+ current (IKin) was highly activated, whereas the outward K+ current (IKout) was inactivated. In contrast, hypertonic conditions inactivated the IKin while activating IKout. Single-channel recording analyses indicated that an alteration in channel opening frequency was responsible for regulating IKin and IKout under different osmotic conditions. Further studies correlate osmoregulation of IKin with the pattern of organization of actin filaments, which may be a critical component in the osmosensing pathway in plant cells.  相似文献   

17.
The plant membrane potential reports on the activity of electrogenic plasma membrane transport processes. The membrane potential is widely used to report for early events associated with changes in light regime, hormone action or pathogen attacks. The membrane potentials of guard cells can be precisely measured with microelectrodes, but this technique is not well suited for rapid screens with large sample numbers. To provide the basis for large-scale membrane potential recordings, we took advantage of voltage-sensitive dyes. Using the fluorescent dyes bis-(1,3-dibutylbarbituric acid)-trimethine oxonol (DiBAC(4)(3)) and the FLIPR Membrane Potential Assay Kit (FMP) dye we followed changes in the membrane potential in guard cells and vacuoles. Based on the fluorescence of DiBAC(4)(3) a method was established for quantification of the membrane potential in guard cell protoplasts which should be considered as an excellent system for high-throughput screening of plant cells. In the absence of abscisic acid (ABA), one-third of the guard cell protoplast population spontaneously oscillated for periods of 5-6 min. Upon application of ABA the hyperpolarized fraction ( approximately 50%) of the guard cell protoplast population depolarized within a few minutes. Membrane potential oscillations were terminated by ABA. Oscillations and ABA responses were found in cell populations with active anion channels. Thus time- and voltage-dependent anion channels likely represent the ABA-sensitive conductance and part of the membrane potential oscillator. The suitability of membrane potential dyes was tested on vacuoles, too. Dye-based vacuolar membrane polarization was monitored upon ATP exposure. We conclude that voltage-sensitive dyes provide an excellent tool for the study of changes in the membrane potential in vacuole as well as guard cell populations.  相似文献   

18.
Exogenous carbon monoxide (CO) can induce pulmonary vasodilation by acting directly on pulmonary artery (PA) smooth muscle cells. We investigated the contribution of K+ channels to the regulation of resistance PA resting membrane potential on control (PAC) rats and rats exposed to CO for 3 wk at 530 parts/million, labeled as PACO rats. Whole cell patch-clamp experiments revealed that the resting membrane potential of PACO cells was more negative than that of PAC cells. This was associated with a decrease of membrane resistance in PACO cells. Additional analysis showed that outward current density in PACO cells was higher (50% at +60 mV) than in PAC cells. This was linked to an increase of iberiotoxin (IbTx)-sensitive current. Chronic CO hyperpolarized membrane of pressurized PA from -46.9 +/- 1.2 to -56.4 +/- 2.6 mV. Additionally, IbTx significantly depolarized membrane of smooth muscle cells from PACO arteries but not from PAC arteries. The present study provides initial evidence of an increase of Ca2+-activated K+ current in smooth muscle cells from PA of rats exposed to chronic CO.  相似文献   

19.
Stomatal movement is accomplished by changes in the ionic content within guard cells as well as in the cell wall of the surrounding stomatal pore. In this study, the sub-stomatal apoplastic activities of K+, Cl-, Ca2+ and H+ were continuously monitored by inserting ion-selective micro-electrodes through the open stomata of intact Vicia faba leaves. In light-adapted leaves, the mean activities were 2.59 mM (K+), 1.26 mM (Cl-), 64 microM (Ca2+) and 89 microM (H+). Stomatal closure was investigated through exposure to abscisic acid (ABA), sudden darkness or both. Feeding the leaves with ABA through the cut petiole initially resulted in peaks after 9-10 min, in which Ca2+ and H+ activities transiently decreased, and Cl- and K+ activities transiently increased. Thereafter, Ca2+, H+ and Cl- activities completely recovered, while K+ activity approached an elevated level of around 10 mM within 20 min. Similar responses were observed following sudden darkness, with the difference that Cl- and Ca2+ activities recovered more slowly. Addition of ABA to dark-adapted leaves evoked responses of Cl- and Ca2+ similar to those observed in the light. K+ activity, starting from its elevated level, responded to ABA with a transient increase peaking around 16 mM, but then returned to its dark level. During stomatal closure, membrane potential changes in mesophyll cells showed no correlation with the K+ kinetics in the sub-stomatal cavity. We thus conclude that the increase in K+ activity mainly resulted from K+ release by the guard cells, indicating apoplastic compartmentation. Based on the close correlation between Cl- and Ca2+ changes, we suggest that anion channels are activated by a rise in cytosolic free Ca2+, a process which activates depolarization-activated K+ release channels.  相似文献   

20.
Trafficking of K+ inward (Kin+) rectifying channels was analyzed in guard cells of Vicia faba transfected with the Kin+ rectifier from Arabidopsis thaliana KAT1 fused to the green fluorescent protein (GFP). Confocal images and whole-cell patch-clamp measurements confirmed the incorporation of active KAT1 channels into the plasma membrane of transfected guard cell protoplasts. The Kin+ rectifier current density of the plasma membrane was much larger in transfected protoplasts than in wild-type (wt) protoplasts. This shows a coupling between K+ channel synthesis and incorporation of the channel into the plasma membrane. Pressure-driven increase and decrease in surface area led to the incorporation and removal of vesicular membrane carrying active Kin+ rectifier in wt and transfected protoplasts. These vesicular membranes revealed a higher channel density than the plasma membrane, suggesting that Kin+ rectifier remains in clusters during trafficking to and from the plasma membrane. The observed results can be explained by a model illustrating that vesicles of a pre-plasma membrane pool carry K+ channels preferentially in clusters during constitutive and pressure-driven exo- and endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号