首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Nemerson  R Gentry 《Biochemistry》1986,25(14):4020-4033
One way in which coagulation may be initiated is by the action of factor VIIa (a plasma serine protease) and tissue factor (a membrane-bound lipid-dependent glycoprotein). We show that in the absence of either factor VIIa or tissue factor, the activation of the natural coagulation substrates, factors IX and X, is not detectable; i.e., tissue factor is an essential activator. We propose that the reaction is fully ordered; that is, the enzyme-activator complex picks up substrate to form a ternary product forming species. Our model precludes the formation of enzyme-substrate and activator-substrate complexes. We have derived equations for the two possible variations of this model: one in which product formation is accompanied by the release of the enzyme-activator complex and the other in which product, free enzyme, and free activator are formed with each catalytic cycle. Our data support only the former which is consistent with both steady-state and rapid equilibrium assumptions. The model is supported by experiments using a monoclonal anti-tissue factor antibody, which affects only the Km app, and a modified form of factor VIIa, which, depending on the sequence in which reagents are added to the reaction, either decreases the Vmax or increases the Km app. We present equations describing the initial velocity of these reactions. Utilizing dilution-jump experiments, we show that the system is hysteretic and suggest that this phenomenon is due to a slow release of enzyme from activator. However, the kinetically determined dissociation constant of enzyme and activator, previously found to be 4.5 nM under equilibrium conditions, was estimated to be 0.04-0.09 nM. Accordingly, we examined other essential activation models in which the product-forming species consists of a complex of enzyme, activator, and substrate at a molar ratio of 1:1:1; none could account for the apparent tight binding of enzyme and activator. We therefore postulate an ordered addition, essential activation model in which the enzyme undergoes two conformational transformations: one as a consequence of binding to tissue factor, resulting in a species which binds to and hydrolyzes its natural substrates. The other conformational change in the enzyme is induced by substrate, resulting in a species which binds more tightly to its activator. Thus, we hypothesize a "conformational cage" which precludes the dissociation of enzyme from activator while significant concentrations of substrate are present.  相似文献   

2.
The initiation of coagulation results from the activation of factor X by an enzyme complex (Xase) composed of the trypsin-like serine proteinase, factor VIIa, bound to tissue factor (TF) on phospholipid membranes. We have investigated the basis for the protein substrate specificity of Xase using TF reconstituted into vesicles of phosphatidylcholine, phosphatidylserine, or pure phosphatidylcholine. We show that occupation of the active site of VIIa within Xase by a reversible inhibitor or an alternate peptidyl substrate is sufficient to exclude substrate interactions at the active site but does not alter the affinity of Xase for factor X. This is evident as classical competitive inhibition of peptidyl substrate cleavage but as classical noncompetitive inhibition of factor X activation by active site-directed ligands. This implies that the productive recognition of factor X by Xase arises from a multistep reaction requiring an initial interaction at sites on the enzyme complex distinct from the active site (exosites), followed by active site interactions and bond cleavage. Exosite interactions determine protein substrate affinity, whereas the second binding step influences the maximum catalytic rate for the reaction. We also show that competitive inhibition can be achieved by interfering with exosite binding using factor X derivatives that are expected to have limited or abrogated interactions with the active site of VIIa within Xase. Thus, substrate interactions at exosites, sites removed from the active site of VIIa within the enzyme complex, determine affinity and binding specificity in the productive recognition of factor X by the VIIa-TF complex. This may represent a prevalent strategy through which distinctive protein substrate specificities are achieved by the homologous enzymes of coagulation.  相似文献   

3.
The activation of coagulation factor X by tissue factor (TF) and coagulation factor VIIa (VIIa) on a phospholipid surface is thought to be the key step in the initiation of blood coagulation. In this reaction, the product, fXa, is transiently and reversibly bound to the TF-VIIa enzyme complex. This in effect leads to a probabilistic inhibition of subsequent fX activations; a new fX substrate molecule cannot be activated until the old fXa molecule leaves. In this study, we demonstrate that benzamidine and soybean trypsin inhibitor-conjugated Sepharose beads, which bind fXa and sequester it away from the reaction, serve to enhance fX activation by the TF-VIIa complex. Thus, removal of fXa from the reactive zone, by either flow, fXa sequestration, or binding to distant lipid surfaces, can serve to enhance the levels of TF-VIIa activity. Using resonance energy transfer, we found the dissociation constants of fX and fXa for 100 nm diameter phospholipid vesicles to be on the order of 30-60 nM, consistent with previous measurements employing planar lipid surfaces. On the basis of the measurements of binding of fXa to phospholipid surfaces, we demonstrate that the rates of fX activation by the TF-VIIa complex under a variety of experimental conditions depend inversely on the amount of product (fXa) bound to the TF-phospholipid surface. These data support an inhibitory role for the reaction product, fXa, and indicate that models previously employed in understanding this initial coagulation reaction must now be re-evaluated to account for both the product occupancy of the phospholipid surface and the binding of the product to the enzyme. Moreover, the inhibitory properties of fXa can be described on the basis of the estimated surface density of fXa molecules on the TF-phospholipid surface.  相似文献   

4.
Although the phospholipid requirement for tissue factor (TF) activity has been well-established, the mechanism by which the surface regulates enzymatic activity remains unclear. We added phospholipid vesicles to already relipidated TF (30/70 PS/PC) and found that added lipid can both enhance and inhibit the rate of factor X (F.X) activation. Using active-site-inhibited F.Xa we demonstrate that F.Xa is a more potent inhibitor of TF/VIIa at lower lipid concentrations, and that this inhibition is attributable to high surface occupancy by F.Xa near the enzyme. We also find that exactly twice as many F.Xa molecules are bound to a lipid surface at saturation as F.X, and that a dimer model of F.Xa binding to the lipid can account for the experimentally observed, preferential binding of F.Xa (compared to F.X) to phospholipid surfaces. We manipulated the amount of phospholipid available to each TF molecule by controlling vesicle size and the number of TF molecules per vesicle and found that, as the 2D radius of phospholipid available to each TF molecule was increased, the observed k(cat) increased hyperbolically toward a maximum or "true k(cat)". At a 2D lipid radius of approximately 37 nm, the observed k(cat) was 50% of the "true k(cat)". Thus, phospholipid surface serves as a conduit for F.X presentation and F.Xa removal, and the rate at which F.Xa leaves the vicinity of the enzyme, either by lateral diffusion or desorption from the surface, regulates the rate of F.X activation. We argue that these findings require reevaluation of existing models of coagulation.  相似文献   

5.
Tissue factor is the cell membrane-anchored cofactor for factor VIIa and triggers the coagulation reactions. The initial step is the conversion of factor VII to factor VIIa which, in vitro, is efficiently catalyzed by low concentrations of factor Xa. To identify the tissue factor region that interacts with the activator factor Xa during this process, we evaluated a panel of soluble tissue factor (1-219) mutants for their ability to support factor Xa-mediated activation of factor VII. The tissue factor residues identified as most important for this interaction (Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, and Tyr185) were identical to those found to be important for the interaction of substrate factor X with the tissue factor.factor VIIa complex. The residues form a continuous surface-exposed patch with an area of about 500 A(2), which appears to be located outside the tissue factor-factor VII contact zone. In agreement, the two monoclonal antibodies 5G6 and D3H44-F(ab')(2), whose epitopes overlap with this identified region, inhibited the rates of factor VII activation by 86% and 95%, respectively. These antibodies also strongly inhibited the conversion of (125)I-labeled factor VII when cell membrane-expressed, full-length tissue factor (1-263) was employed. Together the results suggest the usage of a common surface region of tissue factor in its dual role-as a cofactor for factor Xa-mediated factor VII activation and as a cofactor for factor VIIa-mediated factor X activation. The finding that factor Xa and factor X may engage in similar, if not identical, molecular interactions with tissue factor further indicates that factor Xa and factor X are similarly oriented toward their respective interaction partners in the ternary catalytic complexes.  相似文献   

6.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

7.
Tissue factor (coagulation factor III) inhibition by apolipoprotein A-II   总被引:1,自引:0,他引:1  
Apolipoprotein A-II (apoA-II) has been shown to inhibit tissue factor participation in the activation of coagulation factor X by factor VIIa. The magnitude of inhibition was dependent on the concentration of the enzyme (factor VIIa) and substrate (factor X) present in the reaction. With factor VIIa at 0.86 nM, 0.41 microM apoA-II inhibited factor X activation as much as 50% at 200 nM factor X, with inhibition decreasing to 39% at 3 nM factor X. When factor X was held constant at 100 nM, 0.41 microM apoA-II inhibited its activation by 80% when factor VIIa was present at 26.7 pM, but the inhibition decreased to 47% when factor VIIa was increased to 1.75 nM. Kinetically, increasing apoA-II decreased the reaction Vmax. ApoA-II produced little effect on the apparent Km, but the apparent K1/2 for factor VIIa in the reaction increased as apoA-II concentration increased. In the presence of 0.75 pM bovine tissue factor, reconstituted with 4.31 microM phosphatidylserine-phosphatidylcholine (30:70, w/w) vesicles, and in the absence of apoA-II, the apparent Km was near 7 nM factor X when factor VIIa was present at 0.86 nM. Under the same conditions with factor X at 100 nM, the apparent K1/2 was near 56 pM factor VIIa. As apoA-II was added to 0.41 microM, the apparent K1/2 increased to about 200 pM factor VIIa. The aggregate results support a model in which apoA-II inhibits tissue factor potentiation of factor VIIa activity. Because the apparent K1/2 increases when apoA-II is added, the factor VIIa can apparently protect tissue factor from the effects of apoA-II. Thus, apoA-II appears to inhibit factor X activation by preventing the appropriate association of tissue factor with factor VIIa.  相似文献   

8.
Membrane anchoring of tissue factor (TF), the cell receptor for coagulation factor VIIa (VIIa), exemplifies an effective mechanism to localize proteolysis at the cell surface. A recombinant TF mutant (TF1-219), deleted of membrane spanning and intracellular domains, was used to evaluate the role of phospholipid interactions for assembly of substrate with the catalytic TF.VIIa complex. TF1-219 was secreted by cells rather than expressed as a cell membrane protein. Unlike free VIIa, TF1-219 as well as the TF1-219.VIIa complex demonstrated no stable association with phospholipid. In the absence of lipid, kinetic evaluation of substrate factor X cleavage by free VIIa, TF.VIIa, and TF1-219.VIIa suggests that the catalytic function of VIIa rather than substrate recognition is enhanced by complex formation. Furthermore, compared with free factor X, factor X on phospholipid was preferentially cleaved as a substrate by TF1-219.VIIa. TF-dependent initiation of the coagulation protease cascades thus involves an enhancement of the activation of factor X on the cell surface by a crucial role of the TF transmembrane domain to membrane anchor the reaction, by the TF extracellular domain to provide protein-protein interactions with VIIa to enhance the activity of the catalytic domain of VIIa, and the preferential presentation of factor X as a substrate when associated with phospholipid surfaces.  相似文献   

9.
Macromolecular substrate docking with coagulation enzyme-cofactor complexes involves multiple contacts distant from the enzyme's catalytic cleft. Here we characterize the binding of the Gla-domain of macromolecular substrate coagulation factor X to the complex of tissue factor (TF) and VIIa. Site-directed mutagenesis of charged residue side chains in the VIIa Gla-domain identified Arg-36 as being important for macromolecular substrate docking. Ala substitution for Arg-36 resulted in an increased KM and a decreased rate of X activation. X with a truncated Gla-domain was activated by mutant and wild-type VIIa at indistinguishable rates, demonstrating that Arg-36 interactions require a properly folded Gla-domain of the macromolecular substrate. VIIa Arg-36 was also required for effective docking of the X Gla-domain in the absence of phospholipid, demonstrating that the Gla-domain of VIIa participates in protein-protein interactions with X. In the absence of TF, the mutant VIIa had essentially normal function, indicating that the cofactor positions VIIa's Gla-domain for optimal macromolecular substrate docking. Computational docking suggests multiple charge complementary contacts of the X Gla-domain with TF.VIIa. A prominent interaction is made by the functionally important X residue Gla-14 with the center of the extended docking site created by residues in the carboxyl module of TF and the contiguous VIIa Gla-domain. These data demonstrate the functional importance of interactions of the Gla-domains of enzyme and substrate, and begin to elucidate the molecular details of the ternary TF.VIIa.X complex.  相似文献   

10.
Many in vivo enzymatic processes, such as those of the tissue factor pathway of blood coagulation, occur in environments with facilitated substrate delivery or enzymes bound to cellular or lipid surfaces, which are quite different from the ideal fluid environment for which the Michaelis-Menten equation was derived. To describe the kinetics of such reactions, we propose a microscopic model that focuses on the kinetics of a single-enzyme molecule. This model provides the foundation for macroscopic models of the system kinetics of reactions occurring in both ideal and nonideal environments. For ideal reaction systems, the corresponding macroscopic models thus derived are consistent with the Michaelis-Menten equation. It is shown that the apparent Km is in fact a function of the mechanism of substrate delivery and should be interpreted as the substrate level at which the enzyme vacancy time equals the residence time of ES-complexes; it is suggested that our microscopic model parameters characterize more accurately an enzyme and its catalytic efficiency than does the classical Km. This model can also be incorporated into computer simulations of more complex reactions as an alternative to explicit analytical formulation of a macroscopic model.  相似文献   

11.
The upstream coagulation enzymes are homologous trypsin-like serine proteases that typically function in enzyme-cofactor complexes, exemplified by coagulation factor VIIa (VIIa), which is allosterically activated upon binding to its cell surface receptor tissue factor (TF). TF cooperates with VIIa to create a bimolecular recognition surface that serves as an exosite for factor X binding. This study analyzes to what extent scissile bond docking to the catalytic cleft contributes to macromolecular substrate affinity. Mutation of the P1 Arg residue in factor X to Gln prevented activation by the TF.VIIa complex but did not reduce macromolecular substrate affinity for TF.VIIa. Similarly, mutations of the S and S' subsites in the catalytic cleft of the enzyme VIIa failed to reduce affinity for factor X, although the affinity for small chromogenic substrates and the efficiency of factor X scissile bond cleavage were reduced. Thus, docking of the activation peptide bond to the catalytic cleft of this enzyme-cofactor complex does not significantly contribute to affinity for macromolecular substrate. Rather, it appears that the creation of an extended macromolecular substrate recognition surface involving enzyme and cofactor is utilized to generate substrate specificity between the highly homologous, regulatory proteases of the coagulation cascade.  相似文献   

12.
Examples abound of membrane-bound enzymes for which the local membrane environment plays an important role, including the ectoenzyme that triggers blood clotting, the plasma serine protease, factor VIIa, bound to the integral membrane protein, tissue factor. The activity of this enzyme complex is markedly influenced by lipid bilayer composition and further by tissue factor partitioning into membrane microdomains on some cell surfaces. Unfortunately, little is known about how membrane microdomain composition controls factor VIIa-tissue factor activity, as reactions catalyzed by membrane-tethered enzymes are typically studied under conditions in which the experimenter cannot control the composition of the membrane in the immediate vicinity of the enzyme. To overcome this problem, we used a nanoscale approach that afforded complete control over the membrane environment surrounding tissue factor by assembling the factor VIIa.tissue factor complex on stable bilayers containing 67 +/- 1 phospholipid molecules/leaflet (Nanodiscs). We investigated how local changes in phospholipid bilayer composition modulate the activity of the factor VIIa.tissue factor complex. We also addressed whether this enzyme requires a pool of membrane-bound protein substrate (factor X) for efficient catalysis, or alternatively if it could efficiently activate factor X, which binds directly to the membrane nanodomain adjacent to tissue factor. We have shown that full proteolytic activity of the factor VIIa.tissue factor complex requires extremely high local concentrations of anionic phospholipids and further that a large pool of membrane-bound factor X is not required to support sustained catalysis.  相似文献   

13.
The initial surface reactions of the extrinsic coagulation pathway on live cell membranes were examined under flow conditions. Generation of activated coagulation factor X (fXa) was measured on spherical monolayers of epithelial cells with a total surface area of 41-47 cm(2) expressing tissue factor (TF) at >25 fmol/cm(2). Concentrations of reactants and product were monitored as a function of time with radiolabeled proteins and a chromogenic substrate at resolutions of 2-8 s. At physiological concentrations of fVIIa and fX, the reaction rate was 3.05 +/- 0.75 fmol fXa/s/cm(2), independent of flux, and 10 times slower than that expected for collision-limited reactions. Rates were also independent of surface fVIIa concentrations within the range 0.6-25 fmol/cm(2). The transit time of fX activated on the reaction chamber was prolonged relative to transit times of nonreacting tracers or preformed fXa. Membrane reactions were modeled using a set of nonlinear kinetic equations and a lagged normal density curve to track the expected surface concentration of reactants for various hypothetical reaction mechanisms. The experimental results were theoretically predicted only when the models used a slow intermediate reaction step, consistent with surface diffusion. These results provide evidence that the transfer of substrate within the membrane is rate-limiting in the kinetic mechanisms leading to initiation of blood coagulation by the TF pathway.  相似文献   

14.
The binding of recombinant nematode anticoagulant protein c2 (NAPc2) to either factor X or Xa is a requisite step in the pathway for the potent inhibition of VIIa tissue factor. We have used NAPc2 as a tight binding probe of human Xa to investigate protein substrate recognition by the human prothrombinase complex. NAPc2 binds with high affinity (K(d) approximately 1 nm) to both X and Xa in a way that does not require or occlude the active site of the enzyme. In contrast, NAPc2 is a tight binding, competitive inhibitor of protein substrate cleavage by human Xa incorporated into prothrombinase with saturating concentrations of membranes and Va. By fluorescence binding studies we show that NAPc2 does not interfere with the assembly of human prothrombinase. These are properties expected of an inhibitor that blocks protein substrate recognition by targeting extended macromolecular recognition sites (exosites) on the enzyme complex. A weaker interaction (K(d) = 260-500 nm) observed between NAPc2 and bovine X was restored to a high affinity one in a recombinant chimeric bovine X derivative containing 25 residues from the COOH terminus of the proteinase domain of human X. This region implicated in binding NAPc2 is spatially adjacent to a site previously identified as a potential exosite. Despite the weaker interaction with bovine Xa, NAPc2 was a tight binding competitive inhibitor of protein substrate cleavage by bovine prothrombinase as well. Extended enzymic surfaces elucidated with exosite-directed probes, such as NAPc2, may define a unique region of factor Xa that is modulated following its assembly into prothrombinase and in turn determines the binding specificity of the enzyme complex for its protein substrate.  相似文献   

15.
Safa O  Morrissey JH  Esmon CT  Esmon NL 《Biochemistry》1999,38(6):1829-1837
Factor VIIa, in complex with tissue factor (TF), is the serine protease responsible for initiating the clotting cascade. This enzyme complex (TF/VIIa) has extremely restricted substrate specificity, recognizing only three previously known macromolecular substrates (serine protease zymogens, factors VII, IX, and X). In this study, we found that TF/VIIa was able to cleave multiple peptide bonds in the coagulation cofactor, factor V. SDS-PAGE analysis and sequencing indicated the factor V was cleaved at Arg679, Arg709, Arg1018, and Arg1192, resulting in a molecule with a truncated heavy chain and an extended light chain. This product (FVTF/VIIa) had essentially unchanged activity in clotting assays when compared to the starting material. TF reconstituted into phosphatidylcholine vesicles was ineffective as a cofactor for the factor VIIa cleavage of factor V. However, incorporation of phosphatidylethanolamine in the vesicles had little effect over the presence of 20% phosphatidylserine. FVTF/VIIa was as sensitive to inactivation by activated protein C (APC) as thrombin activated factor V as measured in clotting assays or by the appearance of the expected heavy chain cleavage products. The FVTF/VIIa could be further cleaved by thrombin to release the normal light chain, albeit at a significantly slower rate than native factor V, to yield a fully functional product. These studies thus reveal an additional substrate for the TF/VIIa complex. They also indicate a new potential regulatory pathway of the coagulation cascade, i.e., the production of a form of factor V that can be destroyed by APC without the requirement for full activation of the cofactor precursor.  相似文献   

16.
《Biophysical journal》2023,122(1):99-113
Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Tissue factor pathway inhibitor (TFPI) is one such inhibitor, well known for its inhibitory action on the active enzyme complex comprising tissue factor (TF) and activated clotting factor VII. This complex forms when TF embedded in the blood vessel wall is exposed by injury and initiates coagulation. A different role for TFPI, independent of TF:VIIa, has recently been discovered whereby TFPI binds a partially cleaved form of clotting factor V (FV-h) and impedes thrombin generation on activated platelet surfaces. We hypothesized that this TF-independent inhibitory mechanism on platelet surfaces would be a more effective platform for TFPI than the TF-dependent one. We examined the effects of this mechanism on thrombin generation by including the relevant biochemical reactions into our previously validated mathematical model. Additionally, we included the ability of TFPI to bind directly to and inhibit platelet-bound FXa. The new model was sensitive to TFPI levels and, under some conditions, TFPI could completely shut down thrombin generation. This sensitivity was due entirely to the surface-mediated inhibitory reactions. The addition of the new TFPI reactions increased the threshold level of TF needed to elicit a strong thrombin response under flow, but the concentration of thrombin achieved, if there was a response, was unchanged. Interestingly, we found that direct binding of TFPI to platelet-bound FXa had a greater anticoagulant effect than did TFPI binding to FV-h alone, but that the greatest effects occurred if both reactions were at play. The model includes activated platelets’ release of FV species, and we explored the impact of varying the FV/FV-h composition of the releasate. We found that reducing the zymogen FV fraction of this pool, and thus increasing the fraction that is FV-h, led to acceleration of thrombin generation.  相似文献   

17.
Blood clotting factor VIIa is involved in the first step of the blood coagulation cascade, as a membrane-associated enzyme in complex with tissue factor (TF). Factor VIIa is also an important therapeutic agent for hemophilia where its function may include TF-independent as well as TF-dependent mechanisms. This study compared the activity of wild type factor VIIa (WT-VIIa) with that of a mutant with elevated affinity for membrane (P10Q/Q32E, QE-VIIa). Phospholipid and cell-based assays showed the mutant to have up to 40-fold higher function than WT-VIIa in both TF-dependent and TF-independent reactions. Tissue factor-dependent reactions displayed the maximum enhancement when binding had reached equilibrium in competition with another TF-binding protein. In liposome-based assays, the association rate of WT-VIIa with TF occurred at a physical maximum and could not be improved by site-directed mutagenesis. A practical consequence was identical function of WT-VIIa and QE-VIIa in assays that depended entirely on assembly kinetics. Thus, factor VIIa mutants provided unique reagents for probing the mechanism of factor VIIa action. They may also offer superior agents for therapy.  相似文献   

18.
A Betz  P W Wong  U Sinha 《Biochemistry》1999,38(44):14582-14591
Recently, peptidylketothiazoles have been shown to be potent inhibitors of proteases, but the details of the interaction have not yet been studied. In the work presented here, the interaction of factor Xa, a coagulation protease, with the transition state inhibitor BnSO(2)-D-Arg-Gly-Arg-ketothiazole (C921-78) is characterized. C921-78 is a tight and selective inhibitor of the coagulation protease factor Xa (K(d) = 14 pM). The hydrolytic activity of factor Xa was inhibited by C921-78 in a time-dependent manner. The rate-limiting step of the bimolecular combination of inhibitor and enzyme was competitive with the substrate. Conversely, the inhibitor could be displaced from the active site of the enzyme after exposure of the preformed complex to an excess of substrate or to the active site inhibitor dansyl-Glu-Gly-Arg-chloromethyl ketone (DEGR-CMK) in a slow reaction. The formation of the C921-78-factor Xa complex resulted in a 60% increase in the magnitude of the fluorescence emission spectrum. Rapid mixing of the enzyme and inhibitor produces a monophasic fluorescence increase, compatible with spectral transition in a single step. The rate constant for this reaction increased hyperbolically with the concentration of C921-78, but the amplitude remained constant. These results are consistent with the initial formation of an enzyme-inhibitor complex (EI), followed by a unimolecular conversion of EI to EI linked to a spectral transition. The rate constants of the isomerization provide an estimate of 300000-fold stabilization. Thus, the inhibition of factor Xa by C921-78 follows a mechanism similar to that described classically for slow tight binding inhibitors. However, the two steps of the reaction cannot be kinetically separated by the rapid equilibrium assumption, and therefore, the formation of EI is partially rate-limiting, too. The driving energy for the unusually fast isomerization step may result from the highly favorable interactions of the inhibitor in the primary binding site.  相似文献   

19.
The cell surface receptor tissue factor (TF) initiates coagulation by supporting the proteolytic activation of factors X and IX as well as VII to active serine proteases. Architectural similarity of TF to the cytokine receptor family suggests a strand-loop-strand structure for TF residues 151-174. Site-directed Ala exchanges in the predicted surface loop demonstrated that residues Tyr157, Lys159, Ser163, Gly164, Lys165, and Lys166 are important for function. Addition of side chain atoms at the Ser162 position decreased function, whereas the Ala exchange was tolerated. The dysfunctional mutants bound VII with high affinity and fully supported the catalysis of small peptidyl substrates by the mutant TF.VIIa complex. Lys159-->Ala substitution was compatible with efficient activation of factor X, whereas the Try157-->Ala exchange and mutations in the carboxyl aspect of the predicted loop resulted in diminished activation of factor X. The specific plasma procoagulant activity of all functionally deficient mutants increased 7- to 200-fold upon the supplementation of VIIa suggesting that TF residues 157-167 also provide important interactions that accelerate the activation of VII to VIIa. These data are consistent with assignment of the TF 157-167 region as contributing to protein substrate recognition and cleavage by the TF.VIIa complex.  相似文献   

20.
A study of the kinetic mechanism of elongation factor Ts   总被引:5,自引:0,他引:5  
Elongation factor Ts (EF-Ts) catalyzes the reaction EF-Tu X GDP + nucleotide diphosphate (NDP) reversible EF-Tu X NDP + GDP where NDP is GDP, IDP, GTP, or GMP X PCP. The EF-Ts-catalyzed exchange rates were measured at a series of concentrations of EF-Tu X [3H] GDP and free nucleotide. Plotting the rate data according to the Hanes method produced a series of lines intersecting on the ordinate, a characteristic of substituted enzyme mechanisms. GDP is a competitive inhibitor of IDP exchange, a result predicted for the substituted enzyme mechanism but inconsistent with ternary complex mechanisms that involve an intermediate complex containing EF-Ts and both substrates. The exchange of both GTP and the GTP analog GMP X PCP also follow the substituted enzyme mechanism. The maximal rates of exchange of GDP and GTP are the same, which indicates that the rates of dissociation of EF-Ts from EF-Tu X GDP and EF-Tu X GTP are the same. The steady-state maximal exchange rate is slower by a factor of 20 than the previously reported rate of dissociation of GDP from EF-Ts X EF-Tu. This is interpreted to mean that the rate-determining step in the exchange reaction is the dissociation of EF-Ts from EF-Tu X GDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号