首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V R Galoian 《Biofizika》1978,23(2):370-378
A comparative study of torsional movement of the eye in passive and active tilting of the head and body of the object was carried out. Similarity of torsional movement of the eyes in passive and active movements was shown. It was found by the method of exclusion and selective stimulation of vestibular, cervikal, lumbar optokinetic reflexes, that neither the cervikal, nor lumbar reflexes elicited spontaneous torsional movements of the eyes and had no influence on them. A direct study (coinciding with rotation direction of the stimulus of head rotation) and the reverse (noncoinciding) torsional tracing of a rotating disc and tracing without head movements was investigated. During direct tracing depression of saccades and extention of the slow phase of torsion was found; during the reverse one--a decrease of the eye drist and increase of the amplitude and number of saccades. Phenomena of a seeming acceleration and deceleration of disc rotation etc. have been observed. It was found that with torsional saccades vision was retained. The presence of optokinetic control of phases of torsional eye movements formation has been recorded. Tracing without rotation of the head was accompanied by torsional nistagmus. Possible causes of incomplete stabilisation and optokinetic torsional tracing are discussed.  相似文献   

2.
Tethered walking imagines of the mealworm beetle Tenebrio molitor wave their heads in random fashion. If a periodic pattern of vertical black and white stripes is rotated around the animal a regular nystagmic head movement is superimposed upon the random waving, the frequency of the latter equals the contrast frequency within large ranges of the angular velocity of the pattern. The nystagmus is inverted: After a short period of tracking, during which the angular velocity of the head is the same as that of the panorama, the head returns slowly toward its normal position according to an exponential-like function. Resting animals do not wave their heads. However, if the above panorama is rotated, the beetle turns its head in the direction of the movement of the panorama and holds it in a side-way position, as long as the rotation is maintained. The angular position reached depends in the same manner on the angular velocity of the panorama as the turning tendency of walking animals established in open loop experiments using the spherical Y-maze method.  相似文献   

3.
The above effect was studied in 65 subjects with normal vision (mean age 20 years) in investigations in which the following factors were successively changed: distance of optokinetic stimuli from the eyes; this distance and angular velocity of stimuli; distance and frequency of stimuli or finally distance and accommodation level. The angular velocity of the pursuit nystagmus phase was found to be by far the highest and simultaneously the closest to the angular velocity of optokinetic stimuli when the latter are 1.5m from the eyes. With shorter distances, the velocity of the pursuit movements lags steadily behind that of stimulus velocity. This change is conditioned by changes in OKN amplitude since its frequency as a whole does not change. Even though the accommodation level significantly affects the velocity of the pursuit nystagmus phase, the dependence on the distance of optokinetic stimuli from the eyes persists even after atropinization. The interpretation of these findings must take into account sepcifically the demands on accommodation, convergence, and on visual attention which are increased with shorter distances.  相似文献   

4.
Responses of single units to constant-velocity rotations of the visual surround (0.25-10 degrees/s) were studied in the pretectum of unilateral enucleated rats at different ages. Enucleation was performed either in the first postnatal week ("early" enucleated rats) or in the adult stage ("late" enucleated rats). Pretectal unitary responses were recorded in early enucleated animals at postnatal day 20-21, 36-49 and, in both experimental groups, in the adult stage. Optokinetic ocular nystagmus was studied in early and late enucleated rats in the adult stage. Gain of optokinetic nystagmus in temporo-nasal stimulus direction was not changed for visual surround rotations of up to 20 degrees/s compared to controls in monocular viewing conditions. At higher stimulus velocities, however, the gain dropped. In naso-temporal stimulus direction, optokinetic nystagmus was improved in gain for optokinetic pattern motions of up to 5-10 degrees/s. There were only minor differences in the gain behaviour of optokinetic nystagmus obtained from early or late enucleated rats. The optokinetic responses of pretectal neurons obtained from early and late enucleated rats were reduced in sensitivity by more than 50%. The response patterns of neurons recorded in the contralateral pretectum relative to the intact eye were shifted by a large amount from directional selective to directional nonselective response types. No such changes were obtained in the ipsilateral pretectum. In contrast to normal rats, there were very few directional selective units responding to temporo-nasal pattern motion. On the other hand, a large proportion of directional selective units responded to naso-temporal pattern motion. These latter units were found in both early and late enucleated rats. A similar response type has previously been described for intact young rats but not for adult rats. The velocity tuning curve of pretectal units studied in the adult stage was similar in shape in early and late enucleated rats and resembled that obtained from enucleated or intact young animals. Our results show that response sensitivity, direction and velocity tuning of pretectal units depend crucially on retinal afferent input originating from both eyes. The data suggest that the response characteristics of many of the pretectal units that are considered to be important for mediating optokinetic reflexes depend on interpretectal signal processing using commissural connections. There is very little evidence for an adaptative structural plasticity of the optokinetic system following loss of one eye. The reduced asymmetry observed in gain of optokinetic responses correlated in both early and late enucleated rats with the shifts observed in the distribution of pretectal unitary response patterns.  相似文献   

5.
The recovery of optokinetic responses during regeneration of transected retinal fibres was studied. Regenerated optic fibres were demonstrated by the cobaltfilling technique. After transection of the chiasma in the midline in most of the cases regenerating retinal fibres did not cross, but terminated in ipsilateral visual centres. Aberrant fibres were found in the telencephalon, the periventricular region of the diencephalon, anterior-, posterior- and ventral tegmental commissures and in the isthmic nucleus. In one group of animals optokinetic responses did not return after regeneration of retinal fibres. Re-innervation was either symmetrical on both sides from one eye, or terminal fibres were disorganized. In the second group of animals normal optokinetic nystagmus (OKN) returned. In these cases the fibres were symmetrically distributed on both sides or, alternatively, the crossed fibres outnumbered the ipsilateral ones. The third group of animals showed reversed OKN, spontaneous turning of the head, circling or head nystagmus. Here the majority of regenerated fibres termined ipsilaterally. When the OKN returned, the retinal projection was always restored in the pretectal region. Contrary to our earlier work, we concluded that the basal optic nucleus is not essential for horizontal optokinetic head nystagmus because in a few animals, retinal fibres did not invated this nucleus, and in spite of this the OKN could be evoked. We think now that the most important structure (as an input channel) for horizontal OKN of frogs is the pretectal region.  相似文献   

6.
Effects of active head movements about the pitch, roll, or yaw axes on horizontal optokinetic afternystagmas (OKAN) were examined in 16 subjects to test the hypothesis that otolith organ mediated activity induced by a change in head position can couple to the horizontal velocity storage in humans. Active head movements about the pitch axis, forwards or backwards, produced significant OKAN suppression. Pitch forward head movements exerted the strongest effect. Active head movements about the roll axis towards the right also produced OKAN suppression but only if the tilted position was sustained. No suppression was observed following sustained yaw. However, an unsustained yaw left movement after rightward drum rotation significantly enhanced OKAN. Sustained head movement trials did not significantly alter subsequent control trials. In contrast, unsustained movements about the pitch axis, which involve more complex interactions, exerted long-term effects on subsequent control trials. We conclude that otolith organ mediated activity arising from pitch or roll head movements couples to the horizontal velocity storage in humans, thereby suppressing ongoing OKAN. Activity arising from the horizontal canals during an unsustained yaw movement (observed mainly with yaw left), following drum rotation in a direction contralateral to the movement, may also couple to the velocity storage, resulting in increased activity instead of suppression.  相似文献   

7.
运动图形刺激时家兔的视动震颤反应   总被引:3,自引:2,他引:1  
旨在用实验方法研究家兔的视动震颤(OKN)眼动特点以及单侧前庭迷路损伤对OKN的影响,结果表明:单眼刺激时,家兔的OKN反应存在着从颞侧到鼻侧方向的方向优势;恒定速度刺激时,刺激开始后,家兔的OKN眼动跟踪速度具有从小到大最后趋于稳态的建立过程,刺激消失后,存在眼动速度由大到小直到消失的视动后震颤(OKAN)反应,这两个过程反应了OKN系统中可能存在速度存储机制及其对OKN眼动的控制作用;单侧前庭  相似文献   

8.
In contradistinction to conventional wisdom, we propose that retinal image slip of a visual scene (optokinetic pattern, OP) does not constitute the only crucial input for visually induced percepts of self-motion (vection). Instead, the hypothesis is investigated that there are three input factors: 1) OP retinal image slip, 2) motion of the ocular orbital shadows across the retinae, and 3) smooth pursuit eye movements (efference copy). To test this hypothesis, we visually induced percepts of sinusoidal rotatory self-motion (circular vection, CV) in the absence of vestibular stimulation. Subjects were presented with three concurrent stimuli: a large visual OP, a fixation point to be pursued with the eyes (both projected in superposition on a semi-circular screen), and a dark window frame placed close to the eyes to create artificial visual field boundaries that simulate ocular orbital rim boundary shadows, but which could be moved across the retinae independent from eye movements. In different combinations these stimuli were independently moved or kept stationary. When moved together (horizontally and sinusoidally around the subject's head), they did so in precise temporal synchrony at 0.05 Hz. The results show that the occurrence of CV requires retinal slip of the OP and/or relative motion between the orbital boundary shadows and the OP. On the other hand, CV does not develop when the two retinal slip signals equal each other (no relative motion) and concur with pursuit eye movements (as it is the case, e.g., when we follow with the eyes the motion of a target on a stationary visual scene). The findings were formalized in terms of a simulation model. In the model two signals coding relative motion between OP and head are fused and fed into the mechanism for CV, a visuo-oculomotor one, derived from OP retinal slip and eye movement efference copy, and a purely visual signal of relative motion between the orbital rims (head) and the OP. The latter signal is also used, together with a version of the oculomotor efference copy, for a mechanism that suppresses CV at a later stage of processing in conditions in which the retinal slip signals are self-generated by smooth pursuit eye movements.  相似文献   

9.
An electronic device for recording optokinetic head nystagmus is described. By feeding a point-like mass (radiator) with an alternating current generator, alternating voltage can be measured on a large flat plate (receptor), which depends on the distance of the radiator from the receptor. The radiator was fixed on the head of the frog, and could move between a pair of receptors. Voltage changes during head motions can be recorded in the form of nystagmogram. The head nystagmogram of the frog proved to be similar to that of mammals. Rotation of the optokinetic drum to one direction for several minutes resulted in habituation (decrease of frequency or stopping of head motions). Based on the frequency and amplitude pattern several types of optokinetic head nystagmus could be identified.  相似文献   

10.
Summary Tethered flies were subjected to accelerations about their vertical axes while flying or walking. These accelerations were applied either suddenly to stationary animals or continuously by oscillating the animal from side to side. Head and wing movements resulting from the imposed angular accelerations were photographed with a camera and a stroboscopic flash.Analysis of the photographs shows that the wing movements act to counter the imposed angular accelerations and that during sinusoidal oscillations about the vertical axis, head turns are in antiphase with angular acceleration.Head turns do not occur when the halteres are absent or present and not oscillating. When oscillating, the halteres detect high values of angular acceleration, outside the known capabilities of the visual movement detection system.  相似文献   

11.
Afferent signals from the otolith organs can produce compensatory eye position and velocity signals which has been described as linear vestibulo-ocular reflex (LVOR). The afferent otolith signals carry information about head orientation and changes of head orientation relative to gravity. A head orientation (tilt) related position signal can be obtained from population vector coding of tonic otolith afferent signals during static or dynamic head tilts, which in turn could produce compensatory eye position signals in the LVOR. On the other hand, eye angular velocity signals may be extracted, as proposed in this study, from the population response of tilt-velocity sensitive otolith afferents. Such afferents are shown to encode instantaneous head orientation relative to gravity at onset of a head movement and, as the movement continues, the projection of head angular velocity onto the earth-horizontal plane, indicating the instantaneous direction of movement relative to gravity. Angular velocity components along the earth-vertical direction which are not directly encoded by otolith afferents can be detected by central signal processing. Central reconstruction of 3D head angular velocity allows to obtain information about absolute head orientation in space even in the absence of semicircular canal related information. Such information is important for generating compensatory eye movements as well as for dynamic control of posture.  相似文献   

12.
Measurement of the optomotor response is a common way to determine thresholds of the visual system in animals. Particularly in mice, it is frequently used to characterize the visual performance of different genetically modified strains or to test the effect of various drugs on visual performance. Several methods have been developed to facilitate the presentation of stimuli using computer screens or projectors. Common methods are either based on the measurement of eye movement during optokinetic reflex behavior or rely on the measurement of head and/or body-movements during optomotor responses. Eye-movements can easily and objectively be quantified, but their measurement requires invasive fixation of the animals. Head movements can be observed in freely moving animals, but until now depended on the judgment of a human observer who reported the counted tracking movements of the animal during an experiment. In this study we present a novel measurement and stimulation system based on open source building plans and software. This system presents appropriate 360 stimuli while simultaneously video-tracking the animal''s head-movements without fixation. The on-line determined head gaze is used to adjust the stimulus to the head position, as well as to automatically calculate visual acuity. Exemplary, we show that automatically measured visual response curves of mice match the results obtained by a human observer very well. The spatial acuity thresholds yielded by the automatic analysis are also consistent with the human observer approach and with published results. Hence, OMR-arena provides an affordable, convenient and objective way to measure mouse visual performance.  相似文献   

13.
This study focuses on the transformation of energy in multilinkage systems by a deliberate use of the contact with the ground, leading to a derivation of the directional change of translational velocity of the body's center of mass. The coefficient of friction on the surface on which the impact occurs, and its effect on the overall movement, is studied for general multilinkage systems undergoing impact. The effect of surface friction is made apparent via simulation studies for a two-link example, where two interesting conditions arise: slippage or no slippage on the surface at impact. It is found that once the system stops on the surface, the translational energy increases as the angular velocity increases. Likewise, it is seen that the rotational energy after impact increases as the angular velocity of the first link increases, but the rate of increase of energy is less in the case where the system stops on the ground with no slippage.  相似文献   

14.
Analyses of high speed cinefilm have shown that amphioxus swims either forward or backward with undulatory movement generated at the leading end, the wave of displacement passing along the body with increasing amplitude. The leading end, whether this is "head" or tail, is evidently more rigid than the trailing end, flexibility at each end changing with reversal in direction of swimming. It is suggested that control of the amplitude of the waves of displacement in different regions of the body in swimming is a function of the notochord, contraction of the muscular notochordal plates increasing its stiffness. Connections between the central nervous system and the notochordal plates via the notochordal pits are already known to exist.
As exposure to light invariably induces swimming in dark–adapted animals, it seems probable that the eyes function in initiating movement. The rate of increase in number and size of the eye cups during larval and adult growth and their pattern of distribution in the nerve cord are given. In the adult the eye cups occur predominantly in the anterior and posterior regions of the body. This may be of significance in providing the stimulus for changes in flexibility of these regions in swimming.
High speed cinefilm has also shown that amphioxus can burrow "head" or tail-first and move through sand in a forward or a reverse direction. It is suggested that rapid reversal of direction is of greater importance in movement through sand than in swimming.  相似文献   

15.
Eye movements are very important in order to track an object or to stabilize an image on the retina during movement. Animals without a fovea, such as the mouse, have a limited capacity to lock their eyes onto a target. In contrast to these target directed eye movements, compensatory ocular eye movements are easily elicited in afoveate animals1,2,3,4. Compensatory ocular movements are generated by processing vestibular and optokinetic information into a command signal that will drive the eye muscles. The processing of the vestibular and optokinetic information can be investigated separately and together, allowing the specification of a deficit in the oculomotor system. The oculomotor system can be tested by evoking an optokinetic reflex (OKR), vestibulo-ocular reflex (VOR) or a visually-enhanced vestibulo-ocular reflex (VVOR). The OKR is a reflex movement that compensates for "full-field" image movements on the retina, whereas the VOR is a reflex eye movement that compensates head movements. The VVOR is a reflex eye movement that uses both vestibular as well as optokinetic information to make the appropriate compensation. The cerebellum monitors and is able to adjust these compensatory eye movements. Therefore, oculography is a very powerful tool to investigate brain-behavior relationship under normal as well as under pathological conditions (f.e. of vestibular, ocular and/or cerebellar origin).Testing the oculomotor system, as a behavioral paradigm, is interesting for several reasons. First, the oculomotor system is a well understood neural system5. Second, the oculomotor system is relative simple6; the amount of possible eye movement is limited by its ball-in-socket architecture ("single joint") and the three pairs of extra-ocular muscles7. Third, the behavioral output and sensory input can easily be measured, which makes this a highly accessible system for quantitative analysis8. Many behavioral tests lack this high level of quantitative power. And finally, both performance as well as plasticity of the oculomotor system can be tested, allowing research on learning and memory processes9.Genetically modified mice are nowadays widely available and they form an important source for the exploration of brain functions at various levels10. In addition, they can be used as models to mimic human diseases. Applying oculography on normal, pharmacologically-treated or genetically modified mice is a powerful research tool to explore the underlying physiology of motor behaviors under normal and pathological conditions. Here, we describe how to measure video-oculography in mice8.  相似文献   

16.
Specialized networks of movement detectors in the antero-inferior field of the eyes of the fruitfly, Drosophila melanogaster, and the housefly, Musca domestica, respond to upward (or downward) drift of the retinal images by excitation (or inhibition) of the lift-generating force of flight. The influence of the direction of pattern movement upon the altitude control response has been investigated under conditions of fixed flight in still air. Matched model analysis of the available response curves suggests the predominance of unidirectional movement detectors in these networks. Homologous wingbeat-inhibiting detectors in the specified fields of the eyes of the two species respond preferentially to pattern movement from antero-superior to postero-inferior. The arrangement of wingbeat-exciting detectors seems to follow different schemes: These detectors respond preferentially to movement from inferior to superior in Drosophila, and to movement from antero-inferior to postero-superior in Musca. The wingbeat-exciting network in Musca is restricted to a comparatively small antero-equatorial area of the specified fields of the eyes. The combination of the two types of detectors in this area establishes a powerful lift control system which is particularly sensitive to minute deviations from a given level of flight.  相似文献   

17.
A standard optokinetic response of the ipsilateral and contralateral (driven) eyes of the crab Leptograpsus variegatus to a sinusoidally oscillating striped drum was established. Optokinetic responses were then measured of animals that had been treated by introducing serotonin and octopamine into the blood stream via the heart and also into the neural tissue of the optic lobes via a micropipette. Both serotonin and octopamine enhance the optokinetic effect when applied in low doses. Experiments show that serotonin is most likely acting closer to the sensory input in the optokinetic system.  相似文献   

18.
Oculomotor responses to body rotation were investigated in subjects standing with the eyes closed. A rotatable platform was used to provide body rotation relative to the space-stationary head or upper part of the body (fixation of the head; the head and the shoulders; and the head, the shoulders, and the pelvis). A slow rotation of the body about the longitudinal axis by ±6.5° within 10–150 s evoked an illusion of the upper part of the body turning in space, while the moving footplate was perceived as stationary in space. This illusion was accompanied by marked eye movements in the direction of the illusory rotation. In subjects grasping a rigid ground-based handle, the perception of body movements corresponded to the actual rotation of body parts. In this case, the amplitude of eye movements was substantially lower. It was concluded that the eye movement pattern depends not only on the actual relative movement of the body segments but also on the perception of this movement relative to the extrapersonal space.  相似文献   

19.
ABSTRACT. Horizontal head movements of the praying mantis, Sphodromantis lineola Burm., were recorded continuously. They responded to the presence of a live blowfly prey in the antero-lateral visual field with a rapid saccadic head movement. The angular movement of a fixation saccade was correlated positively to the displacement of the prey from the prothoracic midline. Saccade magnitude and velocity are related. After the stimulus moved out of the visual field, the mantis made a second saccadic head movement, a return saccade towards the body midline. We observed return saccades in which the head overshot or undershot the body midline, as well as saccades which returned the head exactly to its initial position. In 92% of trials with intact mantids, the return movement succeeded eventually in rotating the head back to its initial position, whereas after removal of the neck hair plates this occurred in only 47% of trials. There is a consistent relation between saccade extent and velocity. Velocities of return saccades were slower than those of fixation saccades. It is suggested that sensory inputs from the neck hair plate proprioceptors modify both the magnitude and the angular velocity of fixation and return saccadic head movements.  相似文献   

20.
The gaze fixation reaction was studied in three rhesus monkeys before and during thermoneutral (34.5 degrees C) water immersion to the mid-chest level. The angular vestibulo-ocular reflex gain increased and the head angular velocity decreased significantly in all monkeys in 5 h after the start of immersion. Additionally, one animal was immersed to the neck level. Two hours in the condition of more pronounced support deprivation decreased significantly angular velocity of the head but not increased the angular vestibulo-ocular reflex gain. Therefore, support deprivation act upon the head movement control first.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号