首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
The structural state of tropomyosin (TM) modified by 5-(iodoacetamidoethyl)-aminonaphthalene-1-sulfonate (1.5-IAEDANS) upon F-actin decoration with myosin subfragment 1 (S1) and heavy meromyosin (HMM) in glycerinated myosin- and troponin-free muscle fibers was studied. HMM preparations contained native phosphorylated myosin light chains, while S1 preparations did not. The changes in the polarized fluorescence of 1.5-IAEDANS-TM during the F-actin interaction with S1 were independent of light chains phosphorylation and Ca2+ concentration, but were dependent on these factors during the F-actin interaction with HMM. The binding of myosin heads to F-actin is supposed to initiate conformational changes in TM which are accompanied by changes in the flexibility and molecular arrangement of TM. In the presence of light chains, the structural changes in TM depend on light chains phosphorylation and Ca2+ concentration. The conformational changes in TM seem to be responsible for the mechanisms of coupling of the myosin and tropomyosin modulation system during the actin-myosin interaction in skeletal muscles.  相似文献   

2.
3.
We isolated and characterized a cDNA clone encoding tropomyosin isoform 2 (TM2) from a mouse fibroblast cDNA library. TM2 was found to contain 284 amino acids and was closely related to the rat smooth and skeletal muscle alpha-TMs and the human fibroblast TM3. The amino acid sequence of TM2 showed a nearly complete match with that of human fibroblast TM3 except for the region from amino acids 189 to 213, the sequence of which was identical to those of rat smooth and skeletal muscle alpha-TMs. These results suggest that TM2 is expressed from the same gene that encodes the smooth muscle alpha-TM, the skeletal muscle alpha-TM, and TM3 via an alternative RNA-splicing mechanism. Comparison of the expression of TM2 mRNA in low-metastatic Lewis lung carcinoma P29 cells and high-metastatic D6 cells revealed that it was significantly less in D6 cells than in P29 cells, supporting our previous observations (K. Takenaga, Y. Nakamura, and S. Sakiyama, Mol. Cell. Biol. 8:3934-3937, 1988) at the protein level.  相似文献   

4.
5.
Lysophospholipids are bioactive molecules that are implicated in the control of fundamental biological processes such as proliferation, differentiation, survival and motility in different cell types. Here we review the role of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in the regulation of skeletal muscle biology. Indeed, a wealth of experimental data indicate that these molecules are crucial players in the skeletal muscle regeneration process, acting by controllers of activation, proliferation and differentiation not only of muscle-resident satellite cells but also of mesenchymal progenitors that originate outside the skeletal muscle. Moreover, S1P and LPA are clearly involved in the regulation of skeletal muscle metabolism, muscle adaptation to different physiological needs and resistance to muscle fatigue. Notably, studies accomplished so far, have highlighted the complexity of S1P and LPA signaling in skeletal muscle cells that appears to be further complicated by their close dependence on functional cross-talks with growth factors, hormones and cytokines. Our increasing understanding of bioactive lipid signaling can individuate novel molecular targets aimed at enhancing skeletal muscle regeneration and reducing the fibrotic process that impairs full functional recovery of the tissue during aging, after a trauma or skeletal muscle diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

6.
Muscle fibres, free of myosin, troponin and tropomyosin, containing thin filaments reconstructed from G-actin and modified by fluorescent label 1,5-IAEDANS were used for polarized microfluorimetric studies of the effect of tropomyosin (TM) from smooth muscles, and of subfragment 1 (S1) from skeletal muscles on the structural state of F-actin. TM and S1 were shown to initiate different changes in polarized fluorescence of 1,5-IAEDANS of F-actin: TM increases, whereas S1 decreases fluorescent anisotropy. It was suggested that the structural state of F-actin may differ in the C-terminal of polypeptide chain of actin.  相似文献   

7.
Myoblast fusion is fundamental to the development and regeneration of skeletal muscle. To fuse, myoblasts undergo cell-cell recognition and adhesion and merger of membranes between apposing cells. Cell migration must occur in advance of these events to bring myoblasts into proximity, but the factors that regulate myoblast motility are not fully understood. CD164 is a cell surface sialomucin that is targeted to endosomes and lysosomes via its intracellular region. In hematopoietic progenitor cells, CD164 forms complexes with the motility-stimulating chemokine receptor, CXCR4, in response to the CXCR4 ligand, CXCL12/SDF-1 (Forde, S., Tye, B. J., Newey, S. E., Roubelakis, M., Smythe, J., McGuckin, C. P., Pettengell, R., and Watt, S. M. (2007) Blood 109, 1825-1833). We have previously shown that CD164 stimulates myotube formation in vitro. We report here that CD164 is associated with CXCR4 in C2C12 myoblasts. Cells in which CD164 levels are increased or decreased via overexpression or RNA interference-mediated knockdown, respectively, show enhanced or reduced myotube formation and cell migration, the latter both basally and in response to CXCL12/SDF-1. Furthermore, expression of CD164 cytoplasmic tail mutants that alter the endosome/lysosome targeting sequence and, consequently, the subcellular localization in myoblasts, reveals a similar correlation between cell motility and myotube formation. Finally, Cd164 mRNA is expressed in the dorsal somite (the early myogenic compartment of the mouse embryo) and in premuscle masses. Taken together, these results suggest that CD164 is a regulator of myoblast motility and that this property contributes to its ability to promote myoblast fusion into myotubes.  相似文献   

8.
The effects of caldesmon and smooth muscle tropomyosin on the motility of myosin subfragment I (SI) modified by N-(iodoacetyl)-N'-(1-naphtyl-5-sulfo)-ethylenediamine (1.5-IAEDANS) was studied in myosin-, troponin- and tropomyosin-free rabbit ghost muscle fibers using the polarized microphotometry technique. It was found that the fluorescence anisotropy initiated by the 1.5-IAEDANS-SI arrangement in the fibers is higher in the presence of tropomyosin than in its absence. Caldesmon diminishes the fluorescence anisotropy of the fibers. Data from a kinetic analysis suggest that the motility of fluorophores in the presence of tropomyosin in thin filaments is markedly decreased. Caldesmon weakens the effect of tropomyosin on the fluorescent label motility. It was supposed that caldesmon and tropomyosin initiate conformational changes in myosin heads which are accompanied by loosening or strengthening of their bonds with F-actin, respectively. Caldesmon inhibits the effect induced by tropomyosin.  相似文献   

9.
Structural and functional properties of the non-muscle tropomyosins   总被引:10,自引:0,他引:10  
Summary The non-muscle tropomyosins (TMs), isolated from such tissues as platelets, brain and thyroid, are structurally very similar to the muscle TMs, being composed of two highly -helical subunits wound around each other to form a rod-like molecule. The non-muscle TMs are shorter than the muscle TMs; sequence analysis demonstrates that each subunit of equine platelet TM consists of 247 amino acids, 37 fewer than for skeletal muscle TM. The major differences in sequence between platelet and skeletal muscle TM are found near the amino and carboxyl terminal ends of the proteins. Probably as the result of such alterations, the non-muscle TMs aggregate in a linear end-to-end manner much more weakly than do the muscle TMs. Since end-to-end interactions are responsible for the highly cooperative manner in which TM binds to actin, the non-muscle TMs have a lower affinity for actin filaments than do the muscle TMs. However, the attachment of other proteins to actin (e.g. the Tn-I subunit of skeletal muscle troponin or the S-1 subfragment of skeletal muscle myosin) can increase the affinity of actin filaments for non-muscle TM. The non-muscle TMs interact functionally with the Tn-I component of skeletal muscle troponin to inhibit the ATPase activity of muscle actomyosin and with whole troponin to regulate the muscle actomyosin ATPase in a Ca++-dependent manner, even though one of the binding sites for troponin on skeletal TM is missing in non-muscle TM. A novel actomyosin regulatory system can be produced using Tn-I, calmodulin and non-muscle TM; in this case inhibition is released when the non-muscle TM detaches from the actin filament in the presence of Ca++. Although it has not yet been demonstrated that the non-muscle TMs participate in a Ca++-dependent contractile regulatory system in vivo it does appear that they are associated with actin filaments in vivo.  相似文献   

10.
Skeletal muscle regeneration is severely compromised in the case of extended damage. The current challenge is to find factors capable of limiting muscle degeneration and/or potentiating the inherent regenerative program mediated by a specific type of myoblastic cells, the satellite cells. Recent studies from our groups and others have shown that the bioactive lipid, sphingosine 1-phosphate (S1P), promotes myoblast differentiation and exerts a trophic action on denervated skeletal muscle fibres. In the present study, we examined the effects of S1P on eccentric contraction (EC)-injured extensor digitorum longus muscle fibres and resident satellite cells. After EC, skeletal muscle showed evidence of structural and biochemical damage along with significant electrophysiological changes, i.e. reduced plasma membrane resistance and resting membrane potential and altered Na(+) and Ca(2+) current amplitude and kinetics. Treatment with exogenous S1P attenuated the EC-induced tissue damage, protecting skeletal muscle fibre from apoptosis, preserving satellite cell viability and affecting extracellular matrix remodelling, through the up-regulation of matrix metalloproteinase 9 (MMP-9) expression. S1P also promoted satellite cell renewal and differentiation in the damaged muscle. Notably, EC was associated with the activation of sphingosine kinase 1 (SphK1) and with increased endogenous S1P synthesis, further stressing the relevance of S1P in skeletal muscle protection and repair/regeneration. In line with this, the treatment with a selective SphK1 inhibitor during EC, caused an exacerbation of the muscle damage and attenuated MMP-9 expression. Together, these findings are in favour for a role of S1P in skeletal muscle healing and offer new clues for the identification of novel therapeutic approaches to counteract skeletal muscle damage and disease.  相似文献   

11.
The present study was initiated to determine the time course of changes in the profile of selected skeletal muscle myofibril proteins during compensatory overload. Whole muscle isometric contractile properties were measured to assess the physiological consequences of the overload stimulus. Compensatory overload of plantaris muscle of rats was induced by surgical ablation of the synergistic soleus and gastrocnemius muscles. Myosin light chain (LC) and tropomyosin (TM) compositions of control (CP) and overloaded plantaris (OP) muscles were determined by electrophoresis and myofibrillar ATPase assays were performed to assess changes in contractile protein interactions. Within one week of overload decreases in the alpha:beta TM ratio and myofibrillar ATPase activity were observed. Following 30 days of overload, a transition in type II to type I fibres was associated with an increase in slow myosin LC1. Interestingly, after 77 days of overload, the TM subunit ratio returned to one resembling a fast twitch muscle. It is proposed that the early and transitory changes in the TM subunits of OP, as well as the rapid initial depression in maximum tetanic isometric force and myofibrillar ATPase activity may be explained as a result of muscle fibre degeneration-regeneration. We propose that alterations in protein expression induced by compensatory overload reflect both degenerative-regenerative change and increased neuromuscular activity.  相似文献   

12.
Tropomodulin (Tmod) is an actin-capping protein that binds to the two tropomyosins (TM) at the pointed end of the actin filament to prevent further actin polymerization and depolymerization. Therefore, understanding the role of Tmod is very important when studying actin filament dependent processes such as muscle contraction and intracellular transport. The capping ability of Tmod is highly influenced by TM and is 1000-fold greater in the presence of TM. There are four Tmod isoforms (Tmod1–4), three of which, Tmod1, Tmod3, and Tmod4, are expressed in skeletal muscles. The affinity of Tmod1 to skeletal striated TM (stTM) is higher than that of Tmod3 and Tmod4 to stTM. In this study, we tested mutations in the TM-binding sites of Tmod1, using circular dichroism (CD) and prediction analysis (PONDR). The mutations R11K, D12N, and Q144K were chosen because they decreased the affinity of Tmod1 to stTM, making it similar to that of affinity of Tmod3 and Tmod4 to stTM. Significant reduction of inhibition of actin pointed-end polymerization in the presence of stTM was shown for Tmod1 (R11K/D12N/Q144K) as compared with WT Tmod1. When GFP-Tmod1 and mutants were expressed in primary chicken skeletal myocytes, decreased assembly of Tmod1 mutants was revealed. This indicates a direct correlation between TM-binding and the actin-capping abilities of Tmod. Our data confirmed the hypothesis that assembly of Tmod at the pointed-end of the actin filament depends on its TM-binding affinity.  相似文献   

13.
Using polarization microfluorimetry, the interaction of myosin subfragment 1 (S1) isoforms containing alkali light chains A1 and A2 respectively (S1(A1) and S1(A2] with F-actin of single glycerinated rabbit skeletal muscle fibers was studied. The alkali light chains of S1 were substituted by reassociation for A1 or A2 chains modified by a fluorescent label (1.5-IAEDANS) at the single SH-group located in the C-terminus. It was found that in S1(A1) bound to muscle fiber F-actin the mobility of the fluorescent label is lower than in S1(A2). At the same time the S1(A1) and S1(A2) interaction with F-actin induces similar changes in polarized fluorescence of rhodamine linked to falloidine which, in turn, is specifically bound to F-actin. It is concluded that the both S1 isoforms bind to F-actin and produce similar effects on the conformational state of actin filaments in muscle fibers. Local differences between S1(A1) and S1(A2) seem to be due to the interaction of the N-terminus of A1 within S1(A1) with the C-terminal region of actin.  相似文献   

14.
Voltage-dependent K(+) channels (Kv) are involved in the proliferation of many types of cells, but the mechanisms by which their activity is related to cell growth remain unclear. Kv antagonists inhibit the proliferation of mammalian cells, which is of physiological relevance in skeletal muscle. Although myofibres are terminally differentiated, some resident myoblasts may re-enter the cell cycle and proliferate. Here we report that the expression of Kv1.5 is cell-cycle dependent during myoblast proliferation. In addition to Kv1.5 other Kv, such as Kv1.3, are also up-regulated. However, pharmacological evidence mainly implicates Kv1.5 in myoblast growth. Thus, the presence of S0100176, a Kv antagonist, but not margatoxin and dendrotoxin, led to cell cycle arrest during the G(1)-phase. The use of selective cell cycle blockers showed that Kv1.5 was transiently accumulated during the early G(1)-phase. Furthermore, while myoblasts treated with S0100176 expressed low levels of cyclin A and D(1), the expression of p21(cip-1) and p27(kip1), two cyclin-dependent kinase inhibitors, increased. Our results indicate that the cell cycle-dependent expression of Kv1.5 is involved in skeletal muscle cell proliferation.  相似文献   

15.
Y Ishii  S S Lehrer 《Biochemistry》1985,24(23):6631-6638
The fluorescence of pyrene-TM [rabbit skeletal tropomyosin (TM) labeled at Cys with N-(1-pyrenyl)maleimide] consists of monomer and excimer bands [Betcher-Lange, S., & Lehrer, S.S. (1978) J. Biol. Chem. 253, 3757-3760]; an increase in excimer fluorescence with temperature is due to a shift in equilibrium from a chain-closed state (N) to a chain-open state (X) associated with a helix pretransition [Graceffa, P., & Lehrer, S.S. (1980) J. Biol. Chem. 255, 11296-11300]. In this study, we show that the presence of appreciable excimer fluorescence at temperatures below the N----X pretransition (initial excimer) is due to perturbation of the TM chain-chain interaction by the pyrenes at Cys-190. Fluorescence and ATPase titrations indicated that the label caused a decrease in TM binding to F-actin primarily due to reduced end to end TM interactions on the actin filament. Under conditions where pyrene-TM was bound to F-actin, however, the excimer fluorescence did not increase with temperature, indicating that F-actin stabilizes tropomyosin by inhibiting the N----X transition. The binding of myosin subfragment 1 (S1) to pyrene-TM-F-actin at low ratios to actin caused time-dependent changes in fluorescence. After equilibrium was reached, the initial excimer fluorescence was markedly reduced and remained constant over the pretransition temperature range. Further stabilization of tropomyosin conformation on F-actin is therefore associated with S1 binding. Effects of the binding of S1 to the F-actin-tropomyosin thin filament on the state of tropomyosin were studied by monitoring the monomer fluorescence of pyrene-TM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
An increased rate of fatty acid transport into skeletal muscle has been has been linked to the accumulation of intramuscular lipids and insulin resistance, and red muscles are more susceptible than white muscles in developing fatty acid-mediated insulin resistance. Therefore, we examined in Zucker diabetic fatty (ZDF) rats, relative to lean rats, 1) whether rates of fatty acid transport and transporters (FAT/CD36 and FABPpm) were upregulated in skeletal muscle during the transition from insulin resistance (week 6) to type 2 diabetes (weeks 12 and 24), 2) whether such changes occurred primarily in red skeletal muscle, and 3) whether changes in FAT/CD36 and GLUT4 were correlated. In red muscles of ZDF compared with lean rats, the rates of fatty acid transport were upregulated (+66%) early in life (week 6). Compared with the increase in fatty acid transport in lean red muscle from weeks 12-24 (+57%), the increase in fatty acid transport rate in ZDF red muscle was 50% greater during this same period. In contrast, no differences in fatty acid transport rates were observed in the white muscles of lean and ZDF rats at any time (weeks 6-24). In red muscle only, there was an inverse relationship between FAT/CD36 and GLUT4 protein expression as well as their plasmalemmal content. These studies have shown that, 1) before the onset of diabetes, as well as during diabetes, fatty acid transport and FAT/CD36 expression and plasmalemmal content are upregulated in ZDF rats, but importantly, 2) these changes occurred only in red, not white, muscles of ZDF rats.  相似文献   

17.
Ank1.5 is a muscle-specific isoform of ankyrin1 localized on the sarcoplasmic reticulum (SR) membrane that has been shown to interact with obscurin, a sarcomeric protein. We report here studies on the localization of obscurin and ank1.5 in embryonic and postnatal rodent skeletal muscles. Using two antibodies against epitopes in the N- and C-terminus of obscurin, two distinct patterns of localization were observed. Before birth, the antibodies against the N- and the C-terminus of obscurin stained the Z-disk and M-band, respectively. At the same time, ank1.5 was detected at the Z-disk, rising the possibility that obscurin molecules at M-band may not be able to interact with ank1.5. Localization of ank1.5 at Z-disks in E14 muscle fibers revealed that ank1.5 is among the earliest SR proteins to assemble, since its organization preceded that of other SR proteins, like SERCA and RyR. After birth, the antibody against the N-terminus of obscurin stained the M-band while that against the C-terminus stained both M-bands and the Z-disks. Starting from postnatal day 1, ank1.5 was found at the level of both M-bands and Z-disks. Altogether, from these results we infer that exposure of some obscurin epitopes changes during skeletal muscle development, resulting in distinct, antibody-specific, localization pattern. Why this occurs is not clear, yet these data indicate that the organization of obscurin at different locations in the sarcomere changes during muscle development and that this might affect the interaction with ank1.5.  相似文献   

18.
19.
Tropomodulins (Tmods) are tropomyosin (TM) binding proteins that bind to the pointed end of actin filaments and modulate thin filament dynamics. They bind to the N termini of both "long" TMs (with the N terminus encoded by exon 1a of the alpha-TM gene) and "short" nonmuscle TMs (with the N terminus encoded by exon 1b). In this present study, circular dichroism was used to study the interaction of two designed chimeric proteins, AcTM1aZip and AcTM1bZip, containing the N terminus of a long or a short TM, respectively, with protein fragments containing residues 1 to 130 of erythrocyte or skeletal muscle Tmod. The binding of either TMZip causes similar conformational changes in both Tmod fragments promoting increases in both alpha-helix and beta-structure, although they differ in binding affinity. The circular dichroism changes in the Tmod upon binding and modeling of the Tmod sequences suggest that the interface between TM and Tmod includes a three- or four-stranded coiled coil. An intact coiled coil at the N terminus of the TMs is essential for Tmod binding, as modifications that disrupt the N-terminal helix, such as removal of the N-terminal acetyl group from AcTM1aZip or striated muscle alpha-TM, or introduction of a mutation that causes nemaline myopathy, Met-8-Arg, into AcTM1aZip destroyed Tmod binding.  相似文献   

20.
Small ankyrin 1 (sAnk1) is a 17-kDa transmembrane (TM) protein that binds to the cytoskeletal protein, obscurin, and stabilizes the network sarcoplasmic reticulum in skeletal muscle. We report that sAnk1 shares homology in its TM amino acid sequence with sarcolipin, a small protein inhibitor of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). Here we investigate whether sAnk1 and SERCA1 interact. Our results indicate that sAnk1 interacts specifically with SERCA1 in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle, and in COS7 cells transfected to express these proteins. This interaction was demonstrated by co-immunoprecipitation and an anisotropy-based FRET method. Binding was reduced ∼2-fold by the replacement of all of the TM amino acids of sAnk1 with leucines by mutagenesis. This suggests that, like sarcolipin, sAnk1 interacts with SERCA1 at least in part via its TM domain. Binding of the cytoplasmic domain of sAnk1 to SERCA1 was also detected in vitro. ATPase activity assays show that co-expression of sAnk1 with SERCA1 leads to a reduction of the apparent Ca2+ affinity of SERCA1 but that the effect of sAnk1 is less than that of sarcolipin. The sAnk1 TM mutant has no effect on SERCA1 activity. Our results suggest that sAnk1 interacts with SERCA1 through its TM and cytoplasmic domains to regulate SERCA1 activity and modulate sequestration of Ca2+ in the sarcoplasmic reticulum lumen. The identification of sAnk1 as a novel regulator of SERCA1 has significant implications for muscle physiology and the development of therapeutic approaches to treat heart failure and muscular dystrophies linked to Ca2+ misregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号