首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The locus activating region (LAR), contained within 30 kb of chromatin flanking the human beta-globin gene cluster, has recently been shown to be essential for high level beta-globin gene expression. To determine the effect of fragments containing LAR sequences on globin gene expression, mRNA from a marked gamma-globin gene linked to LAR fragments was assayed in stably transfected K562 erythroleukemia cells. DNaseI hypersensitive site II (HS II), located 10.9 kb upstream of the epsilon-globin gene, was required for high level gamma-globin gene expression. We also showed that a 46 bp enhancer element within HS II was necessary and sufficient for the increased gamma-globin gene expression observed with hemin induced erythroid maturation of K562 cells. These results localize a distant regulatory element important for activation of globin genes during human erythroid cell maturation.  相似文献   

5.
6.
Long-distance regulatory elements and local chromatin structure are critical for proper regulation of gene expression. Here we characterize the chromatin conformation of the chicken α-globin silencer-enhancer elements located 3′ of the domain. We found a characteristic and erythrocyte-specific structure between the previously defined silencer and the enhancer, defined by two nuclease hypersensitive sites, which appear when the enhancer is active during erythroid differentiation. Fine mapping of these sites demonstrates the absence of a positioned nucleosome and the association of GATA-1. Functional analyses of episomal vectors, as well as stably integrated constructs, revealed that GATA-1 plays a major role in defining both the chromatin structure and the enhancer activity. We detected a progressive enrichment of histone acetylation on critical enhancer nuclear factor binding sites, in correlation with the formation of an apparent nucleosome-free region. On the basis of these results, we propose that the local chromatin structure of the chicken α-globin enhancer plays a central role in its capacity to differentially regulate α-globin gene expression during erythroid differentiation and development.  相似文献   

7.
8.
9.
10.
11.
The beta-globin locus control region (LCR) is a cis regulatory element that is located in the 5' part of the locus and confers high-level erythroid lineage-specific and position-independent expression of the globin genes. The LCR is composed of five DNase I hypersensitive sites (HSs), four of which are formed in erythroid cells. The function of the 5'-most site, HS5, remains unknown. To gain insights into its function, mouse HS5 was cloned and sequenced. Comparison of the HS5 sequences of mouse, human, and galago revealed two extensively conserved regions, designated HS5A and HS5B. DNase I hypersensitivity mapping revealed that two hypersensitive sites are located within the HS5A region (designated HS5A(major) and HS5A(minor)), and two are located within the HS5B region (HS5B(major), HS5B(minor)). The positions of each of these HSs colocalize with either GATA-1 or Ap1/NF-E2 motifs, suggesting that these protein binding sites are implicated in the formation of HS5. Gel retardation assays indicated that the Ap1/NF-E2 motifs identified in murine HS5A and HS5B interact with NF-E2 or similar proteins. Studies of primary murine cells showed that HS5 is formed in all hemopoietic tissues tested (fetal liver, adult thymus, and spleen), indicating that this HS is not erythroid lineage specific. HS5 was detected in murine brain but not in murine kidney or adult liver, suggesting that this site is not ubiquitous. The presence of GATA-1 and NF-E2 motifs (which are common features of the DNase I hypersensitive sites of the LCR) suggests that the HS5 is organized in a manner similar to that of the other HSs. Taken together, our results suggest that HS5 is an inherent component of the beta-globin locus control region.  相似文献   

12.
13.
14.
Rhesus-associated glycoprotein is a critical co-factor in the expression of rhesus blood group antigens. We identified and cloned an erythroid-specific major DNase I-hypersensitive site located about 10 kilobases upstream from the translation start site of the RHAG gene. A short core enhancer sequence of 195 base pairs that corresponded with the major hypersensitive site and possessed position- and orientation-independent enhancer activity in K562 cells. In vitro DNase I footprint analysis revealed four protected regions in the core enhancer; two GATA motifs, an Ets-like motif and an unknown motif. The GATA motifs bound GATA-1 and mutagenesis analysis revealed that the proximal one is critical for the enhancing activity. Homology plot analysis using the 5' sequence of the mouse RHAG gene revealed four homologous stretches and multiple insertions of repetitive sequences among them; four LINE/L1 and four Alu in the human and as well as one LINE/L1 and one LTR/MaLR in the mouse gene. The highly conservative enhancer region was flanked by SINE and LINE/L1 in both species. These results suggest that the 5'-flanking sequence of RHAG gene is a preferable target sequence for retroviral transposition and that the enhancer was inserted in the same manner, resulting in the acquisition of erythroid dominant expression.  相似文献   

15.
16.
Q vectors, bicistronic retroviral vectors for gene transfer   总被引:3,自引:0,他引:3  
We have developed a retroviral vector that incorporates unique features of some previously described vectors. This vector includes: 3' long terminal repeats (LTRs) of the self-inactivating class; a 5' LTR that is a hybrid of the cytomegalovirus (CMV) enhancer and the mouse sarcoma virus promoter; an internal CMV immediate early region promoter to drive expression of the transduced gene and the neomycin phosphotransferase selectable marker; an expanded multiple cloning site and an internal ribosome entry site. An SV40 ori was introduced into the vector backbone to promote high copy number replication in packaging cell lines that express the SV40 large T antigen. We demonstrate that these retroviral constructs, designated Q vectors, can be used in applications where high viral titers and high level stable or transient gene expression are desirable.  相似文献   

17.
18.
19.
20.
M Grez  M Zrnig  J Nowock    M Ziegler 《Journal of virology》1991,65(9):4691-4698
The expression of Moloney murine leukemia virus (Mo-MuLV) and Mo-MuLV-derived vectors is restricted in undifferentiated mouse embryonal carcinoma and embryonal stem (ES) cells. We have previously described the isolation of retroviral mutants with host range properties expanded to embryonal cell lines. One of these mutants, the murine embryonic stem cell virus (MESV), is expressed in ES cell lines. Expression of MESV in these cells relies on DNA sequence motifs within the enhancer region of the viral long terminal repeat (LTR). Here we show that replacement of the Mo-MuLV enhancer region by sequences derived from the MESV LTR results in the activation of the Mo-MuLV LTR in ES cells. The enhancer regions of MESV and Mo-MuLV differ by seven point mutations. Of these, a single point mutation at position -166 is sufficient to activate the Mo-MuLV LTR and to confer enhancer-dependent expression to Mo-MuLV-derived retroviral vectors in ES cells. This point mutation creates a recognition site for a sequence-specific DNA-binding factor present in nuclear extracts of ES cells. This factor was found by functional assays to be the murine equivalent to human Sp1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号