首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two morphological forms of wormwood Artemisia lerchiana (f. erecta and f. nutans) and A. pauciflora Web. (morphological form erecta) were grown on sand culture at a range of NaCl concentrations in the nutrient medium and then assayed for Na+, K+, and Cl? content in various organs. In addition, the content of mono-, di-, and trisaccharides and multiatomic alcohols (mannitol and glycerol); water content; and organ biomass were determined. All plants examined showed high NaCl tolerance, comparable to that of halophytes. They were able to maintain high tissue hydration under conditions of salinity-induced growth suppression. The intracellular osmotic pressure in wormwood organs was mainly determined by the presence of Na+, K+, and Cl?, as well as by mono-, di-, and trisaccharides, mannitol, and glycerol. The high content of Na+ and Cl? in wormwood organs was also observed in the absence of salinity, which implies the ability of these organs to absorb ions from diluted NaCl solutions and accumulate ions in cells of their tissues. With the increase in salinity, the content of Na+ and Cl? in roots and leaves increased to even higher levels. It is concluded that the ability of wormwood plants to absorb and accumulate inorganic ions provides for sustainable high intracellular osmotic pressure and, accordingly, low water potential under drought and salinity conditions. Growing plants under high salinity lowered the content of monosaccharides in parallel with accumulation of the trisaccharide raffinose. It is supposed that soluble carbohydrates and multiatomic alcohols are not only significant for osmoregulation but also perform a protective function in wormwood plants. The lower osmotic pressure in root cells compared to that in leaf cells of all plants examined was mainly due to the gradient distribution of K+ and Cl? between roots and leaves. The two Artemisia species and two morphological forms of A. lerchiana did not differ appreciably in the ways of water balance regulation. It is found that different morphologies of two A. lerchiana forms are unrelated to variations in intracellular osmotic and turgor pressures.  相似文献   

2.
The Vitreoscilla hemoglobin (VHb) gene (vgb) was integrated into the chromosome of Bacillus thuringiensis BMB171 using integrative vector pEG491. The production of VHb was confirmed by CO-difference spectra analysis. Fermentation experiments results showed that with the production of VHb, the critical oxygen concentration (COC) of the host strain was reduced from 18 to 12%. The maximum viable cell counts of the VHb+ strain in high, middle, and low aeration/agitation fermentations were 0.94-, 1.23-, and 1.59-fold of those of the VHb strain, respectively. Under the same conditions, the yields of insecticidal crystal proteins (ICP) by VHb+ strain were 1.22-, 1.63-, and 3.13-fold of those of the VHb strain. The production of VHb also accelerated the formation of ICP and spores. These results indicated that the production of VHb could improve the cell density and ICP yield of B. thuringiensis, especially under low aeration/agitation condition.  相似文献   

3.
Two cDNAs isolated from Cymodocea nodosa, CnSOS1A, and CnSOS1B encode proteins with high-sequence similarities to SOS1 plant transporters. CnSOS1A expressed in a yeast Na+-efflux mutant under the control of a constitutive expression promoter mimicked AtSOS1 from Arabidopsis; the wild type cDNA did not improve the growth of the recipient strain in the presence of Na+, but a cDNA mutant that expresses a truncated protein suppressed the defect of the yeast mutant. In similar experiments, CnSOS1B was not effective. Conditional expression, under the control of an arabinose responsive promoter, of the CnSOS1A and CnSOS1B cDNAs in an Escherichia coli mutant defective in Na+ efflux was toxic, and functional analyses were inconclusive. The same constructs transformed into an E. coli K+-uptake mutant revealed that CnSOS1A was also toxic, but that it slightly suppressed defective growth at low K+. Truncation in the C-terminal hydrophilic tail of CnSOS1A relieved the toxicity and proved that CnSOS1A was an excellent low-affinity K+ and Rb+ transporter. CnSOS1B mediated a transient, extremely rapid K+ or Rb+ influx. Similar tests with AtSOS1 revealed that it was not toxic and that the whole protein exhibited excellent K+ and Rb+ uptake characteristics in bacteria.  相似文献   

4.
Yield of S-adenosylmethionine was improved significantly in recombinant Pichia pastoris by controlling NH4 + concentration. The highest production rate was 0.248 g/L h when NH4 + concentration was 450 mmol/L and no repression of cell growth was observed. Within very short induction time (47 h), 11.63 g/L SAM was obtained in a 3.7 L bioreactor.  相似文献   

5.
Summary. Hydrogensquarates of dipeptide l-threonyl-l-serine (H-Thr-Ser-OH) and l-serine (HSq × Ser) have been synthesized, isolated and spectroscopic characterized by solid-state linear-polarized IR-spectroscopy, 1H- and 13C-NMR, ESI-MS and HPLC with tandem masspectrometry (MS-MS) methods. The structures of the salts and neutral dipeptide have been predicted theoretically by ab initio calculations. In the case of H-Thr-Ser-OH the theoretical data are supported by IR-LD ones. The hydrogensquarates consist in positive charged dipeptide or amino acid moiety and negative hydrogensquarate anion (HSq) stabilizing by strong intermolecular hydrogen bonds. The data about the l-serine hydrogensquarate are compared with known crystallographic data thus indicating a good correlation between the theoretical predicted structures and experimentally obtained by single crystal X-ray diffraction.  相似文献   

6.
Methyl oleate was used as a primary carbon source and as an alternative inducer for the production of an extracellular lipase, Lip2, in Y. lipolytica strain LgX64.81 grown in a 20-l bioreactor. The lipase-encoding gene, LIP2, was investigated during culture on methyl oleate using a pLIP2LacZ reporter fusion and we provide evidence for the involvement of methyl oleate in its regulation. Revisions requested 7 July 2005; Revisions received 30 August 2005  相似文献   

7.
The potency of the oligosaccharides SiaLe(x), SiaLe(a), HSO(3)Le(x), and HSO(3)Le(a), their conjugates with polyacrylamide (PAA, 40 kD), and other monomeric and polymeric selectin inhibitors has been compared with that of the polysaccharide fucoidan. The following assay systems were used: 1) a 96-well assay based either on the use of recombinant E-, P-, and L-selectins or an analogous assay with natural P-selectin isolated from human platelets; 2) a platelet-based P-selectin cell assay; and 3) a rat model of peritoneal inflammation. IC(50) values for the neoglycoconjugate SiaLe(a)-PAA were 6, 40, and 85 microM for recombinant E-, P-, and L-selectins, respectively; all monomeric inhibitors were about two orders of magnitude weaker. PAA-conjugates, containing as a ligand tyrosine-O-sulfate (sTyr) in addition to one of the sialylated oligosaccharides, were the most potent synthetic blockers in vitro. Compared with fucoidan, the most potent known P- and L-selectin blocker, the bi-ligand glycoconjugate HSO(3)Le(a)-PAA-sTyr displayed similar inhibitory activity in vitro towards L-selectin and about ten times lower activity towards P-selectin. All of the tested synthetic polymers displayed a similar ability to inhibit neutrophil extravasation in the peritonitis model (in vivo) at 10 mg/kg. The data provide evidence that monomeric SiaLe(x) is considerably more effective as a selectin blocker in vivo than in vitro, whereas the opposite is true for fucoidan and the bi-ligand neoglycoconjugate HSO(3)Le(a)-PAA-sTyr.  相似文献   

8.
Agrobacterium rhizogenes was used for efficient transformation of chrysanthemum. Two types of Agrobacterium, A. rhizogenes (A-13) and A. tumefaciens (LBA4404), which harbor pIG121-Hm, were employed for infection. In the A. rhizogenes-infected explants, hairy roots were not observed on any tested medium or culture condition. When explants were cultured on shoot induction medium, calli were formed at the cutting edge within 4–6 weeks of culture, and shoot primordia were observed on the callus surface after 2 weeks of callus formation. Consequently, with gus introduction, a significantly higher transformation rate was observed for A. rhizogenes (6.0%) compared with A. tumefaciens (3.3%). However, only 0.6% of the frequency of rol insertion was exhibited in A. rhizogenes mediation. These results indicate that A. rhizogenes effectively introduces T-DNA of the binary plasmid into the chrysanthemum genome by introducing Ri T-DNA at a low frequency. It also indicates that the system is a useful alternative for the transformation of chrysanthemum.  相似文献   

9.
An H+-PPase gene, TsVP from Thellungiella halophila, was transferred into two cotton (Gossypium hirsutum) varieties (Lumianyan19 and Lumianyan 21) and southern and northern blotting analysis showed the foreign gene was integrated into the cotton genome and expressed. The measurement of isolated vacuolar membrane vesicles demonstrated that the transgenic plants had higher V–H+-PPase activity compared with wild-type plants (WT). Overexpressing TsVP in cotton improved shoot and root growth, and transgenic plants were much more resistant to osmotic/drought stress than the WT. Under drought stress conditions, transgenic plants had higher chlorophyll content, improved photosynthesis, higher relative water content of leaves and less cell membrane damage than WT. We ascribe these properties to improved root development and the lower solute potential resulting from higher solute content such as soluble sugars and free amino acids in the transgenic plants. In this study, the average seed cotton yields of transgenic plants from Lumianyan 19 and Lumianyan 21 were significantly increased compared with those of WT after exposing to drought stress for 21 days at flowering stage. The average seed cotton yields were 51 and 40% higher than in their WT counterparts, respectively. This study benefits efforts to improve cotton yields in arid and semiarid regions.  相似文献   

10.
11.
We isolated the full-length cDNAs of engrailed and dpp-BMP2/4 orthologues from the pond snail Lymnaea stagnalis and examined their expression patterns during development by the whole mount in situ hybridization. At the gastrula and trochophore stages, engrailed is expressed in the peripheral ectoderm of the presumptive and invaginating shell gland, corroborating its role in the shell formation that is widely conserved among molluscs. At the same stages, dpp-BMP2/4 is expressed in the right-hand side ectoderm of the shell gland and in the invaginating stomodaeum. Unlike in the gastropod Patella vulgata, our results suggested that dpp-BMP2/4 has a role in the shell formation, rather than in the regional specification and that it could be involved in the specification pathway of the left–right asymmetry of the developing shell in L. stagnalis.  相似文献   

12.
Li B  Mao D  Liu Y  Li L  Kuang T 《Photosynthesis research》2005,83(3):297-305
A pure, active cytochrome b 6 f was isolated from the chloroplasts of the marine green alga, Bryopsis corticulans. To investigate and characterize this cytochrome b 6 f complex, sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), absorption spectra measurement and HPLC were employed. It was shown that this purified complex contained four large subunits with apparent molecular masses of 34.8, 24, 18.7 and 16.7 kD. The ratio of Cyt b 6 to Cytf was 2.01 : 1. The cytochromeb 6 f was shown to catalyze the transfer of 73 electrons from decylplastoquinol to plastocyanin–ferricyanide per Cyt f per second. α-Carotene, one kind of carotenoid that has not been found to present in cytochrome b 6 f complex, was discovered in this preparation by reversed phase HPLC. It was different from β-carotene usually found in cytochrome b 6 f complex. The configuration of the major α-carotene component was assigned to be 9-cis by resonance Raman spectroscopy. Different from the previous reports, the configuration of this α-carotene in dissociated state was determined to be all-trans. Besides this carotene, chlorophyll a was also found in this complex. It was shown that the molecular ratios of chlorophylla, cis and all-trans-α-carotene to Cyt f in this complex were 1.2, 0.7 and 0.2, respectively.  相似文献   

13.
14.
Polymerase chain reaction fragment length polymorphisms and nucleotide sequences for a cytochrome P450 gene encoding flavonoid-3',5'-hydroxylase, Hf1, were studied in 19 natural taxa of Petunia. Natural Petunia taxa were classified into six groups based on major insertion or deletion events that occurred only in intron II of the locus. The maximum parsimony method was used to calculate strict consensus trees based on nucleotide sequences in selected regions of the Hf1 locus. Petunia taxa were divided into two major clades in the phylogenetic trees. Petunia axillaris (including three subspecies), P. exserta, and P. occidentalis formed a clade with 100% bootstrap support. This clade is associated with a consistently inflexed pedicel, self-compatibility in most taxa, and geographical distribution in southern and western portions of the genus range. The other clade, which comprised the remainder of the genus is, however, less supported (up to 71% bootstrap); it is characterized by a deflexed pedicel in the fruiting state (except P. inflata), self-incompatibility, and a northeastern distribution. A nuclear gene, Hf1, seems to be a useful molecular marker for elucidating the phylogeny of the genus Petunia when compared with the nucleotide sequence of trnK intron of chloroplast DNA.  相似文献   

15.
Four Na+/H+ antiporters, Mrp, TetA(L), NhaC, and MleN have so far been described in Bacillus subtilis 168. We identified an additional Na+/H+ antiporter, YvgP, from B. subtilis that exhibits homology to the cation: proton antiporter-1 (CPA-1) family. The yvgP-dependent complementation observed in a Na+(Ca2+)/H+ antiporter-defective Escherichia coli mutant (KNabc) suggested that YvgP effluxed Na+ and Li+. In addition, effects of yvgP expression on a K+ uptake-defective mutant of E. coli indicated that YvgP also supported K+ efflux. In a fluorescence-based assay of everted membrane vesicles prepared from E. coli KNabc transformants, YvgP-dependent Na+ (K+, Li+, Rb+)/H+ antiport activity was demonstrated. Na+ (K+, Li+)/H+ activity was higher at pH 8.5 than at pH 7.5. Mg2+, Ca2+ and Mn2+ did not serve as substrates but they inhibited YvgP antiport activities. Studies of yvgP expression in B. subtilis, using a reporter gene fusion, showed a significant constitutive level of expression that was highest in stationary phase, increasing as stationary phase progressed. In addition, the expression level was significantly increased in the presence of added K+ and Na+.  相似文献   

16.
The oxaloacetate decarboxylase (OAD) Na+ pump consists of subunits , , and , which are expressed from an oadGAB gene cluster present in various anaerobic bacteria. Vibrio cholerae has two copies of oad genes, which are termed oad-1 and oad-2. The oad-2 genes are part of the citrate fermentation operon, while the oad-1 genes are flanked by genes encoding products not involved in a catabolic pathway. The gene sequences of oad-1 and oad-2 of V. cholerae strain O395-N1 were determined. The apparent frameshift in the published sequence of the oadA-2 gene from V. cholerae El Tor N16961 was not present in strain O395-N1. Upon anaerobic growth of V. cholerae on citrate, exclusively the oad-2 genes are expressed. OAD was isolated from these cells by monomeric avidin–Sepharose affinity chromatography. The enzyme was of higher specific activity than that from Klebsiella pneumoniae and was significantly more stable. Decarboxylase activity was Na+ dependent, and the activation profile showed strong cooperativity with a Hill coefficient nH=1.8. Oxalate and oxomalonate inhibited the enzyme with half-maximal concentrations of 10 M and 200 M, respectively. After reconstitution into proteoliposomes, the enzyme acted as a Na+ pump. With size-exclusion chromatography, the enzyme eluted in a symmetrical peak at a retention volume corresponding to an apparent molecular mass of approximately 570 kDa, suggesting a tetrameric structure for OAD-2. The two oad gene clusters were heterologously expressed in Escherichia coli, and the decarboxylases were isolated from the host cells.  相似文献   

17.
This study addresses the mechanisms of oxygen-induced regulation of ion transport pathways in mouse erythrocyte, specifically focusing on the role of cellular redox state and ATP levels. Mouse erythrocytes possess Na+/K+ pump, K+-Cl and Na+-K+-2Cl cotransporters that have been shown to be potential targets of oxygen. The activity of neither cotransporter changed in response to hypoxia-reoxygenation. In contrast, the Na+/K+ pump responded to hypoxic treatment with reversible inhibition. Hypoxia-induced inhibition was abolished in Na+-loaded cells, revealing no effect of O2 on the maximal operation rate of the pump. Notably, the inhibitory effect of hypoxia was not followed by changes in cellular ATP levels. Hypoxic exposure did, however, lead to a rapid increase in cellular glutathione (GSH) levels. Decreasing GSH to normoxic levels under hypoxic conditions abolished hypoxia-induced inhibition of the pump. Furthermore, GSH added to the incubation medium was able to mimic hypoxia-induced inhibition. Taken together these data suggest a pivotal role of intracellular GSH in oxygen-induced modulation of the Na+/K+ pump activity.  相似文献   

18.
Transient expression studies using blueberry leaf explants and monitored by -glucuronidase (GUS) assays indicated Agrobacterium tumefaciens strain EHA105 was more effective than LBA4404 or GV3101; and the use of acetosyringone (AS) at 100 M for inoculation and 6 days co-cultivation was optimum compared to 2, 4, 8, 10 or 12 days. Subsequently, explants of the cultivars Aurora, Bluecrop, Brigitta, and Legacy were inoculated with strain EHA105 containing the binary vector pBISN1 with the neomycin phosphotransferase gene (nptII) and an intron-interrupted GUS gene directed by the chimeric super promoter (Aocs)3AmasPmas. Co-cultivation was for 6 days on modified woody plant medium (WPM) plus 100 M AS. Explants were then placed on modified WPM supplemented with 1.0 mg l–1 thidiazuron, 0.5 mg l–1 -naphthaleneacetic, 10 mg l–1 kanamycin (Km), and 250 mg l–1 cefotaxime. Selection for Km-resistant shoots was carried out in the dark for 2 weeks followed by culture in the light at 30 E m–2 s–1 at 25°C. After 12 weeks, selected shoots that were both Km resistant and GUS positive were obtained from 15.3% of the inoculated leaf explants of cultivar Aurora. Sixty-eight independent clones derived from such shoots all tested positive by the polymerase chain reaction using a nptII primer. Eight of eight among these 68 clones tested positive by Southern hybridization using a gusA gene derived probe. The transformation protocol also yielded Km-resistant, GUS-positive shoots that were also PCR positive at frequencies of 5.0% for Bluecrop, 10.0% for Brigitta and 5.6% for Legacy.  相似文献   

19.
Summary. A novel practical method for the synthesis of N-methyl-DL-aspartic acid 1 (NMA) and new syntheses for N-methyl-aspartic acid derivatives are described. NMA 1, the natural amino acid was synthesized by Michael addition of methylamine to dimethyl fumarate 5. Fumaric or maleic acid mono-ester and -amide were regioselectively transformed into beta-substituted aspartic acid derivatives. In the cases of maleamic 11a or fumaramic esters 11b, the α-amide derivative 13 was formed, but hydrolysis of the product provided N-methyl-DL-asparagine 9 via base catalyzed ring closure to DL-α-methylamino-succinimide 4, followed by selective ring opening. Efficient methods were developed for the preparation of NMA-α-amide 13 from unprotected NMA via sulphinamide anhydride 15 and aspartic anhydride 3 intermediate products. NMA diamide 16 was prepared from NMA dimethyl ester 6 and methylamino-succinimide 4 by ammonolysis. Temperature-dependent side reactions of methylamino-succinimide 4 led to diazocinone 18, resulted from self-condensation of methylamino-succinimide via nucleophyl ring opening and the subsequent ring-transformation.  相似文献   

20.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号