首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Purpose: Recently, several abnormally regulated microRNAs (miRNAs) have been identified in patients with Alzheimer''s disease (AD). The purpose of this study was to identify abnormally expressed miRNAs and to investigate whether they affect pathological changes in AD in the 5xFAD AD mouse model.Experimental Approach: Using microarray analysis and RT-qPCR, miRNA expression in the hippocampus of a 4-month-old 5xFAD mouse model of AD was investigated. A dual-luciferase assay was performed to determine whether the altered miR-200c regulates the translation of the target mRNA, Ywhag. Whether miR-200c modulates AD pathology was determined in primary hippocampal neurons and C57BL/6J mice transfected with miR-200c inhibitor. In addition, total miRNAs were extracted from the serums of 28 healthy age-matched controls and 22 individual participants with cognitive impairment, and RT-qPCR was performed.Key results: miR-200c expression was reduced in the hippocampus of 5xFAD mice. In primary hippocampal neurons, miR-200c regulated the translation of 14-3-3γ and increased tau phosphorylation (p-tau) by increasing p-GSK-3β (GSK-3β phosphorylation). It was also confirmed that miR-200c inhibition in the hippocampus of C57BL/6J mice induces cognitive impairment and increases tau phosphorylation through 14-3-3γ activation. Finally, aberrant expression of miR-200c was confirmed in the blood serum of human AD patients.Conclusion and Implications: Our results strongly suggest that dysregulation of miR-200c expression contributes to the pathogenesis of AD, including cognitive impairment through hyperphosphorylated tau.  相似文献   

2.
Adiponectin (APN) deficiency has also been associated with Alzheimer‐like pathologies. Recent studies have illuminated the importance of APN signaling in reducing Aβ accumulation, and the Aβ elimination mechanism remains rudimentary. Therefore, we aimed to elucidate the APN role in reducing Aβ accumulation and its associated abnormalities by targeting autophagy and lysosomal protein changes. To assess, we performed a combined pharmacological and genetic approach while using preclinical models and human samples. Our results demonstrated that the APN level significantly diminished in the plasma of patients with dementia and 5xFAD mice (6 months old), which positively correlated with Mini‐Mental State Examination (MMSE), and negatively correlated with Clinical Dementia Rating (CDR), respectively. APN deficiency accelerated cognitive impairment, Aβ deposition, and neuroinflammation in 5xFAD mice (5xFAD*APN KO), which was significantly rescued by AdipoRon (AR) treatment. Furthermore, AR treatment also markedly reduced Aβ deposition and attenuated neuroinflammation in APP/PS1 mice without altering APP expression and processing. Interestingly, AR treatment triggered autophagy by mediating AMPK‐mTOR pathway signaling. Most importantly, APN deficiency dysregulated lysosomal enzymes level, which was recovered by AR administration. We further validated these changes by proteomic analysis. These findings reveal that APN is the negative regulator of Aβ deposition and its associated pathophysiologies. To eliminate Aβ both extra‐ and intracellular deposition, APN contributes via the autophagic/lysosomal pathway. It presents a therapeutic avenue for AD therapy by targeting autophagic and lysosomal signaling.  相似文献   

3.
Regulation of neuroinflammation and β‐amyloid (Aβ) production are critical factors in the pathogenesis of Alzheimer''s disease (AD). Cathepsin E (CatE), an aspartic protease, is widely studied as an inducer of growth arrest and apoptosis in several types of cancer cells. However, the function of CatE in AD is unknown. In this study, we demonstrated that the ablation of CatE in human amyloid precursor protein knock‐in mice, called APPNL−G−F mice, significantly reduced Aβ accumulation, neuroinflammation, and cognitive impairments. Mechanistically, microglial CatE is involved in the secretion of soluble TNF‐related apoptosis‐inducing ligand, which plays an important role in microglia‐mediated NF‐κB‐dependent neuroinflammation and neuronal Aβ production by beta‐site APP cleaving enzyme 1. Furthermore, cannula‐delivered CatE inhibitors improved memory function and reduced Aβ accumulation and neuroinflammation in AD mice. Our findings reveal that CatE as a modulator of microglial activation and neurodegeneration in AD and suggest CatE as a therapeutic target for AD by targeting neuroinflammation and Aβ pathology.  相似文献   

4.
Senile plaques and neurofibrillary tangles are major neuropathological features of Alzheimer''s Disease (AD), however neuronal loss is the alteration that best correlates with cognitive impairment in AD patients. Underlying neurotoxic mechanisms are not completely understood although specific neurotransmission deficiencies have been observed in AD patients and, in animal models, cholinergic and noradrenergic denervation may increase amyloid-beta deposition and tau phosphorylation in denervated areas. On the other hand brainstem neurodegeneration has been suggested as an initial event in AD, and serotonergic dysfunction, as well as reductions in raphe neurones density, have been reported in AD patients. In this study we addressed whether specific serotonergic denervation, by administering 5,7-dihydroxitriptamine (5,7-DHT) in the raphe nuclei, could also worsen central pathology in APPswe/PS1dE9 mice or interfere with learning and memory activities. In our hands specific serotonergic denervation increased tau phosphorylation in denervated cortex, without affecting amyloid-beta (Aβ) pathology. We also observed that APPswe/PS1dE9 mice lesioned with 5,7-DHT were impaired in the Morris water maze test, supporting a synergistic effect of the serotonergic denervation and the presence of APP/PS1 transgenes on learning and memory impairment. Altogether our data suggest that serotonergic denervation may interfere with some pathological aspects observed in AD, including tau phosphorylation or cognitive impairment, without affecting Aβ pathology, supporting a differential role of specific neurotransmitter systems in AD.  相似文献   

5.
Chronic neuroinflammation is a pathogenic component of Alzheimer’s disease (AD) that may limit the ability of the brain to clear amyloid deposits and cellular debris. Tight control of the immune system is therefore key to sustain the ability of the brain to repair itself during homeostasis and disease. The immune‐cell checkpoint receptor/ligand pair PD‐1/PD‐L1, known for their inhibitory immune function, is expressed also in the brain. Here, we report upregulated expression of PD‐L1 and PD‐1 in astrocytes and microglia, respectively, surrounding amyloid plaques in AD patients and in the APP/PS1 AD mouse model. We observed juxtamembrane shedding of PD‐L1 from astrocytes, which may mediate ectodomain signaling to PD‐1‐expressing microglia. Deletion of microglial PD‐1 evoked an inflammatory response and compromised amyloid‐β peptide (Aβ) uptake. APP/PS1 mice deficient for PD‐1 exhibited increased deposition of Aβ, reduced microglial Aβ uptake, and decreased expression of the Aβ receptor CD36 on microglia. Therefore, ineffective immune regulation by the PD‐1/PD‐L1 axis contributes to Aβ plaque deposition during chronic neuroinflammation in AD.  相似文献   

6.
7.
As the brain‐resident innate immune cells, reactive microglia are a major pathological feature of Alzheimer''s disease (AD). However, the exact role of microglia is still unclear in AD pathogenesis. Here, using metabolic profiling, we show that microglia energy metabolism is significantly suppressed during chronic Aβ‐tolerant processes including oxidative phosphorylation and aerobic glycolysis via the mTOR‐AKT‐HIF‐1α pathway. Pharmacological activation of TRPV1 rescues Aβ‐tolerant microglial dysfunction, the AKT/mTOR pathway activity, and metabolic impairments and restores the immune responses including phagocytic activity and autophagy function. Amyloid pathology and memory impairment are accelerated in microglia‐specific TRPV1‐knockout APP/PS1 mice. Finally, we showed that metabolic boosting with TRPV1 agonist decreases amyloid pathology and reverses memory deficits in AD mice model. These results indicate that TRPV1 is an important target regulating metabolic reprogramming for microglial functions in AD treatment.  相似文献   

8.
In Alzheimer''s disease (AD), deposition of pathological tau and amyloid-β (Aβ) drive synaptic loss and cognitive decline. The injection of misfolded tau aggregates extracted from human AD brains drives templated spreading of tau pathology within WT mouse brain. Here, we assessed the impact of Aβ copathology, of deleting loci known to modify AD risk (Ptk2b, Grn, and Tmem106b) and of pharmacological intervention with an Fyn kinase inhibitor on tau spreading after injection of AD tau extracts. The density and spreading of tau inclusions triggered by human tau seed were unaltered in the hippocampus and cortex of APPswe/PSEN1ΔE9 transgenic and AppNL-F/NL-F knock-in mice. In mice with human tau sequence replacing mouse tau, template matching enhanced neuritic tau burden. Human AD brain tau-enriched preparations contained aggregated Aβ, and the Aβ coinjection caused a redistribution of Aβ aggregates in mutant AD model mice. The injection-induced Aβ phenotype was spatially distinct from tau accumulation and could be ameliorated by depleting Aβ from tau extracts. These data suggest that Aβ and tau pathologies propagate by largely independent mechanisms after their initial formation. Altering the activity of the Fyn and Pyk2 (Ptk2b) kinases involved in Aβ-oligomer–induced signaling, or deleting expression of the progranulin and TMEM106B lysosomal proteins, did not alter the somatic tau inclusion burden or spreading. However, mouse aging had a prominent effect to increase the accumulation of neuritic tau after injection of human AD tau seeds into WT mice. These studies refine our knowledge of factors capable of modulating tau spreading.  相似文献   

9.
Anatabine is a minor tobacco alkaloid, which is also found in plants of the Solanaceae family and displays a chemical structure similarity with nicotine. We have shown previously that anatabine displays some anti-inflammatory properties and reduces microgliosis and tau phosphorylation in a pure mouse model of tauopathy. We therefore investigated the effects of a chronic oral treatment with anatabine in a transgenic mouse model (Tg PS1/APPswe) of Alzheimer’s disease (AD) which displays pathological Aβ deposits, neuroinflammation and behavioral deficits. In the elevated plus maze, Tg PS1/APPswe mice exhibited hyperactivity and disinhibition compared to wild-type mice. Six and a half months of chronic oral anatabine treatment, suppressed hyperactivity and disinhibition in Tg PS1/APPswe mice compared to Tg PS1/APPswe receiving regular drinking water. Tg PS1/APPswe mice also elicited profound social interaction and social memory deficits, which were both alleviated by the anatabine treatment. We found that anatabine reduces the activation of STAT3 and NFκB in the vicinity of Aβ deposits in Tg PS1/APPswe mice resulting in a reduction of the expression of some of their target genes including Bace1, iNOS and Cox-2. In addition, a significant reduction in microgliosis and pathological deposition of Aβ was observed in the brain of Tg PS1/APPswe mice treated with anatabine. This is the first study to investigate the impact of chronic anatabine treatment on AD-like pathology and behavior in a transgenic mouse model of AD. Overall, our data show that anatabine reduces β-amyloidosis, neuroinflammation and alleviates some behavioral deficits in Tg PS1/APPswe, supporting further exploration of anatabine as a possible disease modifying agent for the treatment of AD.  相似文献   

10.
A prevalent model of Alzheimer’s disease (AD) pathogenesis postulates the generation of neurotoxic fragments derived from the amyloid precursor protein (APP) after its internalization to endocytic compartments. The molecular pathways that regulate APP internalization and intracellular trafficking in neurons are incompletely understood. Here, we report that 5xFAD mice, an animal model of AD, expressing signaling‐deficient variants of the p75 neurotrophin receptor (p75NTR) show greater neuroprotection from AD neuropathology than animals lacking this receptor. p75NTR knock‐in mice lacking the death domain or transmembrane Cys259 showed lower levels of Aβ species, amyloid plaque burden, gliosis, mitochondrial stress, and neurite dystrophy than global knock‐outs. Strikingly, long‐term synaptic plasticity and memory, which are completely disrupted in 5xFAD mice, were fully recovered in the knock‐in mice. Mechanistically, we found that p75NTR interacts with APP at the plasma membrane and regulates its internalization and intracellular trafficking in hippocampal neurons. Inactive p75NTR variants internalized considerably slower than wild‐type p75NTR and showed increased association with the recycling pathway, thereby reducing APP internalization and co‐localization with BACE1, the critical protease for generation of neurotoxic APP fragments, favoring non‐amyloidogenic APP cleavage. These results reveal a novel pathway that directly and specifically regulates APP internalization, amyloidogenic processing, and disease progression, and suggest that inhibitors targeting the p75NTR transmembrane domain may be an effective therapeutic strategy in AD.  相似文献   

11.
Amyloid‐β (Aβ) deposits, pathologic tau, and neurodegeneration are major pathological hallmarks of Alzheimer''s disease (AD). The relationship between neuronal loss and Aβ deposits is one of the fundamental questions in the pathogenesis of AD. However, this relationship is controversial. One main reason for the conflicting results may be the confounding effects of pathologic tau, which often coexists with Aβ deposits in the brains of AD patients. To clarify the relationship between neuronal loss and Aβ deposits, mouse models of AD, which develop abundant Aβ deposits in the aged brain without pathologic tau, were used to examine the co‐localization of NeuN‐positive neurons, NF‐H‐positive axons, MBP‐positive myelin sheaths, and Aβ deposits. Neuronal loss, as measured by decreased staining of the neuronal cell body, axon, and myelin sheath, as well as the IBA‐1‐positive microglia, was significantly increased in the core area of cerebral Aβ deposits, but not in adjacent areas. Furthermore, neuronal loss in the core area of cerebral Aβ deposits was correlated with Aβ deposit size. These results clearly indicate that neuronal loss is restricted to the core of Aβ deposits, and this restricted loss probably occurs because the Aβ deposit attracts microglia, which cluster in the core area where Aβ toxicity and neuroinflammation toxicity are restrained. These findings may contribute to our understanding of the relationship between neuronal loss and Aβ deposits in the absence of pathologic tau.  相似文献   

12.
ObjectivesIn this study, we administered immunity‐and‐matrix regulatory cells (IMRCs) via tail vein (IV) and intracerebroventricular (ICV) injection to 3‐month‐old 5×FAD transgenic mice to assess the effects of IMRC transplantation on the behaviour and pathology of early‐stage Alzheimer''s disease (AD).Materials and methodsClinical‐grade human embryonic stem cell (hESC)‐derived IMRCs were produced under good manufacturing practice (GMP) conditions. Three‐month‐old 5×FAD mice were administered IMRCs via IV and ICV injection. After 3 months, the mice were subjected to behavioural tests and electrophysiological analysis to evaluate their cognitive function, memory ability and synaptic plasticity. The effect of IMRCs on amyloid‐beta (Aβ)‐related pathology was detected by thioflavin‐S staining and Western blot. Quantitative real‐time PCR, ELISA and immunostaining were used to confirm that IMRCs inhibit neuroinflammation. RNA‐seq analysis was performed to measure changes in gene expression and perform a pathway analysis in response to IMRC treatment.ResultsIMRC administration via tail vein injection significantly ameliorated cognitive deficits in early‐stage AD (5×FAD) mice. However, no significant change was observed in the characteristic pathology of AD in the ICV group. Plaque analysis revealed that IMRCs did not influence either plaque deposition or BACE1 expression. In addition, IMRCs inhibited inflammatory responses and reduced microglial activation in vivo.ConclusionsWe have shown that peripheral administration of IMRCs can ameliorate AD pathology and associated cognitive deficits.  相似文献   

13.
Brain lesions in Alzheimer's disease (AD) include amyloid plaques made of Aβ peptides and neurofibrillary tangles composed of hyperphosphorylated tau protein with synaptic and neuronal loss and neuroinflammation. Aβ oligomers can trigger tau phosphorylation and neuronal alterations through activation of neuronal kinases leading to progressive cognitive decline. PKR is a ubiquitous pro‐apoptotic serine/threonine kinase, and levels of activated PKR are increased in AD brains and AD CSF. In addition, PKR regulates negatively memory formation in mice. To assess the role of PKR in an AD in vivo model, we crossed 5xFAD transgenic mice with PKR knockout (PKRKO) mice and we explored the contribution of PKR on cognition and brain lesions in the 5xFAD mouse model of AD as well as in neuron–microglia co‐cultures exposed to the innate immunity activator lipopolysaccharide (LPS). Nine‐month‐old double‐mutant mice revealed significantly improved memory consolidation with the new object location test, starmaze test, and elevated plus maze test as compared to 5xFAD mice. Brain amyloid accumulation and BACE1 levels were statistically decreased in double‐mutant mice. Apoptosis, neurodegeneration markers, and synaptic alterations were significantly reduced in double‐mutant mice as well as neuroinflammation markers such as microglial load and brain cytokine levels. Using cocultures, we found that PKR in neurons was essential for LPS microglia‐induced neuronal death. Our results demonstrate the clear involvement of PKR in abnormal spatial memory and brain lesions in the 5xFAD model and underline its interest as a target for neuroprotection in AD.  相似文献   

14.
Alzheimer''s disease (AD) is an age‐related neurodegenerative disease, and the imbalance between production and clearance of β‐amyloid (Aβ) is involved in its pathogenesis. Autophagy is an intracellular degradation pathway whereby leads to removal of aggregated proteins, up‐regulation of which may be a plausible therapeutic strategy for the treatment of AD. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Our previous study showed that thioperamide, as an antagonist of H3R, enhances autophagy and protects against ischemic injury. However, the effect of thioperamide on autophagic function and Aβ pathology in AD remains unknown. In this study, we found that thioperamide promoted cognitive function, ameliorated neuronal loss, and Aβ pathology in APP/PS1 transgenic (Tg) mice. Interestingly, thioperamide up‐regulated autophagic level and lysosomal function both in APP/PS1 Tg mice and in primary neurons under Aβ‐induced injury. The neuroprotection by thioperamide against AD was reversed by 3‐MA, inhibitor of autophagy, and siRNA of Atg7, key autophagic‐related gene. Furthermore, inhibition of activity of CREB, H3R downstream signaling, by H89 reversed the effect of thioperamide on promoted cell viability, activated autophagic flux, and increased autophagic‐lysosomal proteins expression, including Atg7, TFEB, and LAMP1, suggesting a CREB‐dependent autophagic activation by thioperamide in AD. Taken together, these results suggested that H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB‐mediated autophagy and lysosomal pathway, which contributed to Aβ clearance. This study uncovered a novel mechanism involving autophagic regulating behind the therapeutic effect of thioperamide in AD.  相似文献   

15.
Acrolein, an unsaturated aldehyde, is increased in the brain of Alzheimer''s disease (AD) patients and identified as a potential inducer of sporadic AD. Synaptic dysfunction, as a typical pathological change occurring in the early stage of AD, is most closely associated with the severity of dementia. However, there remains a lack of clarity on the mechanisms of acrolein inducing AD‐like pathology and synaptic impairment. In this study, acrolein‐treated primary cultured neurons and mice were applied to investigate the effects of acrolein on cognitive impairment and synaptic dysfunction and their signaling mechanisms. In vitro, ROCK inhibitors, Fasudil, and Y27632, could attenuate the axon ruptures and synaptic impairment caused by acrolein. Meanwhile, RNA‐seq distinct differentially expressed genes in acrolein models and initially linked activated RhoA/Rho‐kinase2 (ROCK2) to acrolein‐induced synaptic dysfunction, which could regulate neuronal cytoskeleton and neurite. The Morris water maze test and in vivo field excitatory postsynaptic potential (fEPSP) were performed to evaluate spatial memory and long‐term potential (LTP), respectively. Acrolein induced cognitive impairment and attenuated LTP. Furthermore, the protein level of Synapsin 1 and postsynaptic density 95 (PSD95) and dendritic spines density were also decreased in acrolein‐exposed mice. These changes were improved by ROCK2 inhibitor Fasudil or in ROCK2+/− mice. Together, our findings suggest that RhoA/ROCK2 signaling pathway plays a critical role in acrolein‐induced synaptic damage and cognitive dysfunction, suggesting inhibition of ROCK2 should benefit to the early AD.  相似文献   

16.
Alzheimer’s disease (AD) is the most common form of dementia characterized by progressive memory loss and cognitive decline. Although neuroinflammation and oxidative stress are well-recognized features of AD, their correlations with the early molecular events characterizing the pathology are not yet well clarified. Here, we characterize the role of RAGE–TXNIP axis in neuroinflammation in relation to amyloid-beta (Aβ) burden in both in vivo and in vitro models. In the hippocampus of 5xFAD mice microglial activation, cytokine secretion, and glial fibrillary acidic protein-enhanced expression are paralleled with increased TXNIP expression. TXNIP silencing or its pharmacological inhibition prevents neuroinflammation in those mice. TXNIP is also associated with RAGE and Aβ. In particular, RAGE–TXNIP axis is required for targeting Aβ in mitochondria, leading to mitochondrial dysfunction and oxidative stress. Silencing of TXNIP or inhibition of RAGE activation reduces Aβ transport from the cellular surface to mitochondria, restores mitochondrial functionality, and mitigates Aβ toxicity. Furthermore, Aβ shuttling into mitochondria promotes Drp1 activation and exacerbates mitochondrial dysfunction, which induces NLRP3 inflammasome activation, leading to secretion of IL-1β and activation of the pyroptosis-associated protein Gasdermin D (GSDMD). Downregulation of RAGE–TXNIP axis inhibits Aβ-induced mitochondria dysfunction, inflammation, and induction of GSDMD. Herein we unveil a new pathway driven by TXNIP that links the mitochondrial transport of Aβ to the activation of Drp1 and the NLRP3 inflammasome, promoting the secretion of IL-1β and the pyroptosis pathway associated with GSDMD cleavage. Altogether these data shed new light on a novel mechanism of action of RAGE–TXNIP axis in microglia, which is intertwined with Aβ and ultimately causes mitochondria dysfunction and NLRP3 inflammasome cascade activation, suggesting TXNIP as a druggable target to be better deepened for AD.Subject terms: Cellular neuroscience, Inflammasome  相似文献   

17.
T cells, the critical immune cells of the adaptive immune system, are often dysfunctional in Alzheimer''s disease (AD) and are involved in AD pathology. Reports highlight neuroinflammation as a crucial modulator of AD pathogenesis, and aberrant T cells indirectly contribute to neuroinflammation by secreting proinflammatory mediators via direct crosstalk with glial cells infiltrating the brain. However, the mechanisms underlying T‐cell abnormalities in AD appear multifactorial. Risk factors for AD and pathological hallmarks of AD have been tightly linked with immune responses, implying the potential regulatory effects of these factors on T cells. In this review, we discuss how the risk factors for AD, particularly Apolipoprotein E (ApoE), Aβ, α‐secretase, β‐secretase, γ‐secretase, Tau, and neuroinflammation, modulate T‐cell activation and the association between T cells and pathological AD hallmarks. Understanding these associations is critical to provide a comprehensive view of appropriate therapeutic strategies for AD.  相似文献   

18.
Alzheimer''s disease (AD), the most common cause of dementia in the elderly, is pathologically characterized by extracellular deposition of amyloid‐β peptides (Aβ) and microglia‐dominated inflammatory activation in the brain. p38α‐MAPK is activated in both neurons and microglia. How p38α‐MAPK in microglia contributes to AD pathogenesis remains unclear. In this study, we conditionally knocked out p38α‐MAPK in all myeloid cells or specifically in microglia of APP‐transgenic mice, and examined animals for AD‐associated pathologies (i.e., cognitive deficits, Aβ pathology, and neuroinflammation) and individual microglia for their inflammatory activation and Aβ internalization at different disease stages (e.g., at 4 and 9 months of age). Our experiments showed that p38α‐MAPK‐deficient myeloid cells were more effective than p38α‐MAPK‐deficient microglia in reducing cerebral Aβ and neuronal impairment in APP‐transgenic mice. Deficiency of p38α‐MAPK in myeloid cells inhibited inflammatory activation of individual microglia at 4 months but enhanced it at 9 months. Inflammatory activation promoted microglial internalization of Aβ. Interestingly, p38α‐MAPK‐deficient myeloid cells reduced IL‐17a‐expressing CD4‐positive lymphocytes in 9 but not 4‐month‐old APP‐transgenic mice. By cross‐breeding APP‐transgenic mice with Il‐17a‐knockout mice, we observed that IL‐17a deficiency potentially activated microglia and reduced Aβ deposition in the brain as shown in 9‐month‐old myeloid p38α‐MAPK‐deficient AD mice. Thus, p38α‐MAPK deficiency in all myeloid cells, but not only in microglia, prevents AD progression. IL‐17a‐expressing lymphocytes may partially mediate the pathogenic role of p38α‐MAPK in peripheral myeloid cells. Our study supports p38α‐MAPK as a therapeutic target for AD patients.  相似文献   

19.
Brain mitochondrial dysfunction is hallmark pathology of Alzheimer’s disease (AD). Recently, the role of synaptosomal mitochondrial dysfunction in the development of synaptic injury in AD has received increasing attention. Synaptosomal mitochondria are a subgroup of neuronal mitochondria specifically locating at synapses. They play an essential role in fueling synaptic functions by providing energy on the site; and their defects may lead to synaptic failure, which is an early and pronounced pathology in AD. In our previous studies we have determined early synaptosomal mitochondrial dysfunction in an AD animal model (J20 line) overexpressing human Amyloid beta (Aβ), the key mediator of AD. In view of the limitations of J20 line mice in representing the full aspects of amyloidopathy in AD cases, we employed 5xFAD mice which are thought to be a desirable paradigm of amyloidopathy as seen in AD subjects. In addition, we have also examined the status of synaptosomal mitochondrial dynamics as well as Parkin-mediated mitophagy which have not been previously investigated in this mouse model. In comparison to nontransgenic (nonTg mice), 5xFAD mice demonstrated prominent synaptosomal mitochondrial dysfunction. Moreover, synaptosomal mitochondria from the AD mouse model displayed imbalanced mitochondrial dynamics towards fission along with activated Parkin and LC3BII recruitment correlating to spatial learning & memory impairments in 5xFAD mice in an age-dependent manner. These results suggest that synaptosomal mitochondrial deficits are primary pathology in Aβ-rich environments and further confirm the relevance of synaptosomal mitochondrial deficits to the development of AD.  相似文献   

20.
Alzheimer’s disease (AD) is an unremitting neurodegenerative disorder characterized by cerebral amyloid-β (Aβ) accumulation and gradual decline in cognitive function. Changes in brain energy metabolism arise in the preclinical phase of AD, suggesting an important metabolic component of early AD pathology. Neurons and astrocytes function in close metabolic collaboration, which is essential for the recycling of neurotransmitters in the synapse. However, this crucial metabolic interplay during the early stages of AD development has not been sufficiently investigated. Here, we provide an integrative analysis of cellular metabolism during the early stages of Aβ accumulation in the cerebral cortex and hippocampus of the 5xFAD mouse model of AD. Our electrophysiological examination revealed an increase in spontaneous excitatory signaling in the 5xFAD hippocampus. This hyperactive neuronal phenotype coincided with decreased hippocampal tricarboxylic acid (TCA) cycle metabolism mapped by stable 13C isotope tracing. Particularly, reduced astrocyte TCA cycle activity and decreased glutamine synthesis led to hampered neuronal GABA synthesis in the 5xFAD hippocampus. In contrast, the cerebral cortex of 5xFAD mice displayed an elevated capacity for oxidative glucose metabolism, which may suggest a metabolic compensation in this brain region. We found limited changes when we explored the brain proteome and metabolome of the 5xFAD mice, supporting that the functional metabolic disturbances between neurons and astrocytes are early primary events in AD pathology. In addition, synaptic mitochondrial and glycolytic function was selectively impaired in the 5xFAD hippocampus, whereas non-synaptic mitochondrial function was maintained. These findings were supported by ultrastructural analyses demonstrating disruptions in mitochondrial morphology, particularly in the 5xFAD hippocampus. Collectively, our study reveals complex regional and cell-specific metabolic adaptations in the early stages of amyloid pathology, which may be fundamental for the progressing synaptic dysfunctions in AD.Subject terms: Proteomics, Alzheimer''s disease, Molecular neuroscience, Alzheimer''s disease  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号