首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stem cell senescence is an important cause of aging. Delaying senescence may present a novel way to combat aging and age‐associated diseases. This study provided a mechanistic insight into the protective effect of ganoderic acid D (GA‐D) against human amniotic mesenchymal stem cell (hAMSCs) senescence. GA‐D, a Ganoderma lucidum‐derived triterpenoid, markedly prevented hAMSCs senescence via activating the Ca2+ calmodulin (CaM)/CaM‐dependent protein kinase II (CaMKII)/nuclear erythroid 2‐related factor 2 (Nrf2) axis, and 14‐3‐3ε was identified as a target of GA‐D. 14‐3‐3ε‐encoding gene (YWHAE) knockdown in hAMSCs reversed the activation of the CaM/CaMKII/Nrf2 signals to attenuate the GA‐D anti‐aging effect and increase senescence‐associated β‐galactosidase (SA‐β‐gal), p16 and p21 expression levels, including reactive oxygen species (ROS) production, thereby promoting cell cycle arrest and decreasing differentiation potential. YWHAE overexpression maintained or slightly enhanced the GA‐D anti‐aging effect. GA‐D prevented d‐galactose‐caused aging in mice by significantly increasing the total antioxidant capacity, as well as superoxide dismutase and glutathione peroxidase activity, and reducing the formation of malondialdehyde, advanced glycation end products, and receptor of advanced glycation end products. Consistent with the protective mechanism of GA‐D against hAMSCs senescence, GA‐D delayed the senescence of bone‐marrow mesenchymal stem cells in this aging model in vivo, reduced SA‐β‐gal and ROS production, alleviated cell cycle arrest, and enhanced cell viability and differentiation via regulating 14‐3‐3ε and CaM/CaMKII/Nrf2 axis. Therefore, GA‐D retards hAMSCs senescence by targeting 14‐3‐3ε to activate the CaM/CaMKII/Nrf2 signaling pathway. Furthermore, the in vivo GA‐D anti‐aging effect may involve the regulation of stem cell senescence via the same signal axis.  相似文献   

3.
Renal fibrosis is an important pathological feature of diabetic kidney disease (DKD), manifested as tubular interstitial fibrosis, tubular atrophy, glomerulosclerosis and damage to the normal structure of the kidney. Renal fibrosis can eventually develop into renal failure. A better understanding of renal fibrosis in DKD is needed due to clinical limitations of current anti‐fibrotic drugs in terms of effectiveness, cost‐effectiveness and side effects. Fibrosis is characterized by local excessive deposition of extracellular matrix, which is derived from activated myofibroblasts to increase its production or specific tissue inhibitors of metalloproteinases to reduce its degradation. In recent years, endothelial‐mesenchymal transition (EndMT) has gradually integrated into the pathogenesis of fibrosis. In animal models of diabetic kidney disease, it has been found that EndMT is involved in the formation of renal fibrosis and multiple signalling pathways such as TGF‐β signalling pathway, Wnt signalling pathway and non‐coding RNA network participate in the regulation of EndMT during fibrosis. Here, we mainly review EndMT regulation and targeted therapy of renal fibrosis in DKD.  相似文献   

4.
The manufacturing of viable and functional β‐cell spheroids is required for diabetes cell therapy and drug testing. Mesenchymal stromal/stem cells (MSCs) are known to improve β‐cell viability and functionality. We therefore investigated the aggregation behavior of three different β‐cell lines (rat insulinoma‐1 cell line [INS‐1], mouse insulinoma‐6 cell line [MIN6], and a cell line formed by the electrofusion of primary human pancreatic islets and PANC‐1 cells [1.1B4]), two MSC types, and mixtures of β‐cells and MSCs under different conditions. We screened several static systems to produce uniform β‐cell and MSC spheroids, finding cell‐repellent plates the most suitable. The three different β‐cell lines differed in their aggregation behavior, spheroid size, and growth in the same static environment. We found no major differences in spheroid formation between primary MSCs and an immortalized MSC line, although both differed with regard to the aggregation behavior of the β‐cell lines. All spheroids showed a reduced viability due to mass transfer limitations under static conditions. We therefore investigated three dynamic systems (shaking multi‐well plates, spinner flasks, and shaking flasks). In shaking flasks, there were no β‐cell‐line‐dependent differences in aggregation behavior, resulting in uniform and highly viable spheroids. We found that the aggregation behavior of the β‐cell lines changed in a static coculture with MSCs. The β‐cell/MSC coculture conditions must be refined to avoid a rapid segregation into distinct populations under dynamic conditions.  相似文献   

5.
6.
The outbreak of COVID‐19 has become a serious public health emergency. The virus targets cells by binding the ACE2 receptor. After infection, the virus triggers in some humans an immune storm containing the release of proinflammatory cytokines and chemokines followed by multiple organ failure. Several vaccines are enrolled, but an effective treatment is still missing. Mesenchymal stem cells (MSCs) have shown to secrete immunomodulatory factors that suppress this cytokine storm. Therefore, MSCs have been suggested as a potential treatment option for COVID‐19. We report here that the ACE2 expression is minimal or nonexistent in MSC derived from three different human tissue sources (adipose tissue, umbilical cord Wharton`s jelly and bone marrow). In contrast, TMPRSS2 that is implicated in SARS‐CoV‐2 entry has been detected in all MSC samples. These results are of particular importance for future MSC‐based cell therapies to treat severe cases after COVID‐19 infection.  相似文献   

7.
8.
Studies in multiple species indicate that reducing growth hormone (GH) action enhances healthy lifespan. In fact, GH receptor knockout (GHRKO) mice hold the Methuselah prize for the world''s longest‐lived laboratory mouse. We previously demonstrated that GHR ablation starting at puberty (1.5 months), improved insulin sensitivity and female lifespan but results in markedly reduced body size. In this study, we investigated the effects of GHR disruption in mature‐adult mice at 6 months old (6mGHRKO). These mice exhibited GH resistance (reduced IGF‐1 and elevated GH serum levels), increased body adiposity, reduced lean mass, and minimal effects on body length. Importantly, 6mGHRKO males have enhanced insulin sensitivity and reduced neoplasms while females exhibited increased median and maximal lifespan. Furthermore, fasting glucose and oxidative damage was reduced in females compared to males irrespective of Ghr deletion. Overall, disrupted GH action in adult mice resulted in sexual dimorphic effects suggesting that GH reduction at older ages may have gerotherapeutic effects.  相似文献   

9.
Reliable control over the process of cell differentiation is a major challenge in moving stem cell-based therapies forward. The composition of the extracellular matrix (ECM) is known to play an important role in modulating differentiation. We have developed a system to encapsulate adult human mesenchymal stem cells (hMSC) within spherical three-dimensional (3D) microenvironments consisting of a defined mixture of collagen Type I and agarose polymers. These protein-based beads were produced by emulsification of liquid hMSC-matrix suspensions in a silicone fluid phase and subsequent gelation to form hydrogel beads, which were collected by centrifugation and placed in culture. Bead size and size distribution could be varied by changing the encapsulation parameters (impeller speed and blade separation), and beads in the range of 30-150 microns in diameter were reliably produced. Collagen concentrations up to 40% (wt/wt) could be incorporated into the bead matrix. Visible light and fluorescence microscopy confirmed that the collagen matrix was uniformly distributed throughout the beads. Cell viability post-encapsulation was in the range of 75-90% for all bead formulations (similar to control slab gels) and remained at this level for 8 days in culture. Fluorescent staining of the actin cytoskeleton revealed that hMSC spreading increased with increasing collagen concentration. This system of producing 3D microenvironments of defined matrix composition therefore offers a way to control cell-matrix interactions and thereby guide hMSC differentiation. The bead format allows the use of small amounts of matrix proteins, and such beads can potentially be used as a cell delivery vehicle in tissue repair applications.  相似文献   

10.
Due to the unsatisfied effects of clinical drugs used in rheumatoid arthritis (RA), investigators shifted their focus on the biotherapy. Although human gingival mesenchymal stem cells (GMSC) have the potential to be used in treating RA, GMSC‐based therapy has some inevitable side effects such as immunogenicity and tumorigenicity. As one of the most important paracrine mediators, GMSC‐derived exosomes (GMSC‐Exo) exhibit therapeutic effects via immunomodulation in a variety of disease models, bypassing potential shortcomings of the direct use of MSCs. Furthermore, exosomes are not sensitive to freezing and thawing, and can be readily available for use. GMSC‐Exo has been reported to promote tissue regeneration and wound healing, but have not been reported to be effective against autoimmune diseases. We herein compare the immunomodulatory functions of GMSC‐Exo and GMSC in collagen‐induced arthritis (CIA) model and in vitro CD4+ T‐cell co‐culture model. The results show that GMSC‐Exo has the same or stronger effects compared with GMSC in inhibiting IL‐17A and promoting IL‐10, reducing incidences and bone erosion of arthritis, via inhibiting IL‐17RA‐Act1‐TRAF6‐NF‐κB signal pathway. Our results suggest that GMSC‐Exo has many advantages in treating CIA, and may offer a promising new cell‐free therapy strategy for RA and other autoimmune diseases.  相似文献   

11.
ObjectivesIn this study, we administered immunity‐and‐matrix regulatory cells (IMRCs) via tail vein (IV) and intracerebroventricular (ICV) injection to 3‐month‐old 5×FAD transgenic mice to assess the effects of IMRC transplantation on the behaviour and pathology of early‐stage Alzheimer''s disease (AD).Materials and methodsClinical‐grade human embryonic stem cell (hESC)‐derived IMRCs were produced under good manufacturing practice (GMP) conditions. Three‐month‐old 5×FAD mice were administered IMRCs via IV and ICV injection. After 3 months, the mice were subjected to behavioural tests and electrophysiological analysis to evaluate their cognitive function, memory ability and synaptic plasticity. The effect of IMRCs on amyloid‐beta (Aβ)‐related pathology was detected by thioflavin‐S staining and Western blot. Quantitative real‐time PCR, ELISA and immunostaining were used to confirm that IMRCs inhibit neuroinflammation. RNA‐seq analysis was performed to measure changes in gene expression and perform a pathway analysis in response to IMRC treatment.ResultsIMRC administration via tail vein injection significantly ameliorated cognitive deficits in early‐stage AD (5×FAD) mice. However, no significant change was observed in the characteristic pathology of AD in the ICV group. Plaque analysis revealed that IMRCs did not influence either plaque deposition or BACE1 expression. In addition, IMRCs inhibited inflammatory responses and reduced microglial activation in vivo.ConclusionsWe have shown that peripheral administration of IMRCs can ameliorate AD pathology and associated cognitive deficits.  相似文献   

12.
ObjectivesWe aim to explore the safety and feasibility of umbilical cord mesenchymal stem cells (UC‐MSCs) transplantation in patients with severe and critically severe coronavirus disease‐2019 (COVID‐19).MethodsWe conducted a small sample, single arm, pilot trial. In addition to standard therapy, we performed four rounds of transplantation of UC‐MSCs in sixteen patients with severe and critically severe COVID‐19. We recorded adverse events from enrolment to Day 28. We evaluated the oxygenation index, inflammatory biomarkers, radiological presentations of the disease and lymphocyte subsets count on the 7th day (D7 ± 1 day), the 14th day (D14 ± 1 day) and the 28th day (D28 ± 3 days).ResultsThere were no infusion‐related or allergic reactions. The oxygenation index was improved after transplantation. The mortality of enrolled patients was 6.25%, whereas the historical mortality rate was 45.4%. The level of cytokines estimated varied in the normal range, the radiological presentations (ground glass opacity) were improved and the lymphocyte count and lymphocyte subsets (CD4+ T cells, CD8+ T cells and NK cells) count showed recovery after transplantation.ConclusionsIntravenous transplantation of UC‐MSCs was safe and feasible for treatment of patients with severe and critically severe COVID‐19 pneumonia.  相似文献   

13.
Spermatogenesis is a cyclical process in which different generations of spermatids undergo a series of developmental steps at a fixed time and finally produce spermatids. Here, we report that overexpression of PD‐L1 (B7 homolog1) in the testis causes sperm developmental disorders and infertility in male mice, with severe malformation and sloughing during spermatid development, characterized by disorganized and collapsed seminiferous epithelium structure. PD‐L1 needs to be simultaneously expressed on Sertoli cells and spermatogonia to cause spermatogenesis failure. After that, we excluded the influence of factors such as the PD‐L1 receptor and humoral regulation, confirming that PD‐L1 has an intrinsic function to interact with PD‐L1. Studies have shown that PD‐L1 not only serves as a ligand but also plays a receptor‐like role in signal transduction. PD‐L1 interacts with PD‐L1 to affect the adhesive function of germ cells, causing malformation and spermatid sloughing. Taken together, these results indicate that PD‐L1 can interact with PD‐L1 to cause germ cell detachment and male infertility.  相似文献   

14.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

15.
MicroRNAs (miRNAs) are emerging biomarkers in biological processes and the role of miR‐495‐3p has been identified in melanoma, while the detailed molecular mechanisms remain to be further explored. We aim to explore the effect of histone deacetylase 3 (HDAC3) and miR‐495‐3p on epithelial‐mesenchymal transition (EMT) and oncogenicity of melanoma cells by regulating tumour necrosis factor receptor‐associated factor 5 (TRAF5). Levels of HDAC3, miR‐495‐3p and TRAF5 in melanoma tissues and pigmented nevus tissues were determined, and the predictive roles of HDAC3 and miR‐495‐3p in prognosis of melanoma patients were measured. The melanoma cells were screened and transfected with relative oligonucleotides and plasmids, and the expression of HDAC3, miR‐495‐3p and TRAF5, and phenotypes of melanoma cells were gauged by a series of assays. The relations between HDAC3 and miR‐495‐3p, and between miR‐495‐3p and TRAF5 were confirmed. HDAC3 and TRAF5 were increased while miR‐495‐3p was decreased in melanoma cells and tissues, and the low expression of miR‐495‐3p as well as high expression of HDAC3 indicated a poor prognosis of melanoma patients. Inhibited HDAC3 elevated miR‐495‐3p to suppress EMT and oncogenicity of melanoma cells by reducing TRAF5. HDAC3 particularly bound to miR‐495‐3p and TRAF5 was the target gene of miR‐495‐3p. Our results revealed that down‐regulated HDAC3 elevates miR‐495‐3p to suppress malignant phenotypes of melanoma cells by inhibiting TRAF5, thereby repressing EMT progression of melanoma cells. This study may provide novel targets for melanoma treatment.  相似文献   

16.
ObjectivesBone marrow‐derived cells (BMDCs), especially mesenchymal stem cells (MSCs), may be involved in the development of Helicobacter pylori‐associated gastric cancer (GC) in mice, but the specific mechanism remains unclear, and evidence from human studies is lacking.Materials and MethodsTo verify the role of BM‐MSCs in H pylori‐associated GC, green fluorescent protein (GFP)‐labelled BM‐MSCs were transplanted into the subserosal layers of the stomach in a mouse model of chronic H pylori infection. Three months post‐transplantation, the mice were sacrificed, and the gastric tissues were subjected to histopathological and immunofluorescence analyses. In addition, we performed fluorescence in situ hybridization (FISH) and immunofluorescence analyses of gastric tissue from a female patient with H pylori infection and a history of acute myeloid leukaemia who received a BM transplant from a male donor.ResultsIn mice with chronic H pylori infection, GFP‐labelled BM‐MSCs migrated from the serous layer to the mucosal layer and promoted GC progression. The BM‐MSCs differentiated into pan‐cytokeratin‐positive epithelial cells and α‐smooth muscle actin‐positive cancer‐associated fibroblasts (CAFs) by secreting the protein thrombospondin‐2. FISH analysis of gastric tissue from the female patient revealed Y‐chromosome‐positive cells. Immunofluorescence analyses further confirmed that Y‐chromosome‐positive cells showed positive BM‐MSCs marker. These results suggested that allogeneic BMDCs, including BM‐MSCs, can migrate to the stomach under chronic H pylori infection.ConclusionsTaken together, these findings imply that BM‐MSCs participate in the development of chronic H pylori‐associated GC by differentiating into both gastric epithelial cells and CAFs.  相似文献   

17.
During aging, preservation of locomotion is generally considered an indicator of sustained good health, in elderlies and in animal models. In Caenorhabditis elegans, mutants of the insulin‐IGF‐1 receptor DAF2/IIRc represent a paradigm of healthy aging, as their increased lifespan is accompanied by a delay in age‐related loss of motility. Here, we investigated the DAF‐2/IIRc‐dependent relationship between longevity and motility using an auxin‐inducible degron to trigger tissue‐specific degradation of endogenous DAF‐2/IIRc. As previously reported, inactivation of DAF‐2/IIRc in neurons or intestine was sufficient to extend the lifespan of worms, whereas depletion in epidermis, germline, or muscle was not. However, neither intestinal nor neuronal depletion of DAF‐2/IIRc prevented the age‐related loss of motility. In 1‐day‐old adults, DAF‐2/IIRc depletion in neurons reduced motility in a DAF‐16/FOXO dependent manner, while muscle depletion had no effect. By contrast, DAF‐2 depletion in the muscle of middle‐age animals improved their motility independently of DAF‐16/FOXO but required UNC‐120/SRF. Yet, neuronal or muscle DAF‐2/IIRc depletion both preserved the mitochondria network in aging muscle. Overall, these results show that the motility pattern of daf‐2 mutants is determined by the sequential and opposing impact of neurons and muscle tissues and can be dissociated from the regulation of the lifespan. This work also provides the characterization of a versatile tool to analyze the tissue‐specific contribution of insulin‐like signaling in integrated phenotypes at the whole organism level.  相似文献   

18.
Ataxia‐telangiectasia (A‐T) is a genetic disorder caused by the lack of functional ATM kinase. A‐T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A‐T remains elusive. Here, we utilize human pluripotent stem cell‐derived cortical brain organoids to study A‐T neuropathology. Mechanistically, we show that the cGAS‐STING pathway is required for the recognition of micronuclei and induction of a senescence‐associated secretory phenotype (SASP) in A‐T olfactory neurosphere‐derived cells and brain organoids. We further demonstrate that cGAS and STING inhibition effectively suppresses self‐DNA‐triggered SASP expression in A‐T brain organoids, inhibits astrocyte senescence and neurodegeneration, and ameliorates A‐T brain organoid neuropathology. Our study thus reveals that increased cGAS and STING activity is an important contributor to chronic inflammation and premature senescence in the central nervous system of A‐T and constitutes a novel therapeutic target for treating neuropathology in A‐T patients.  相似文献   

19.
Bone marrow mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine. However, the cellular biology of these cells is not fully understood. The present study characterizes the cyclic ADP-ribose (cADPR)-mediated Ca(2+) signals in human MSCs and finds that externally applied cADPR can increase the frequency of spontaneous intracellular Ca(2+) (Ca(2+) (i) ) oscillations. The increase was abrogated by a specific cADPR antagonist or an inositol trisphosphate receptor (IP3R) inhibitor, but not by ryanodine. In addition, the cADPR-induced increase of Ca(2+) (i) oscillation frequency was prevented by inhibitors of nucleoside transporter or by inhibitors of the transient receptor potential cation melastatin-2 (TRPM2) channel. RT-PCR revealed mRNAs for the nucleoside transporters, concentrative nucleoside transporters 1/2 and equilibrative nucleoside transporters 1/3, IP3R1/2/3 and the TRPM2 channel, but not those for ryanodine receptors and CD38 in human MSCs. Knockdown of the TRPM2 channel by specific short interference RNA abolished the effect of cADPR on the Ca(2+) (i) oscillation frequency, and prevented the stimulation of proliferation by cADPR. Moreover, cADPR remarkably increased phosphorylated extracellular-signal-regulated kinases 1/2 (ERK1/2), but not Akt or p38 mitogen-activated protein kinase (MAPK). However, cADPR had no effect on adipogenesis or osteogenesis in human MSCs. Our results indicate that cADPR is a novel regulator of Ca(2+) (i) oscillations in human MSCs. It permeates the cell membrane through the nucleoside transporters and increases Ca(2+) oscillation via activation of the TRPM2 channel, resulting in enhanced phosphorylation of ERK1/2 and, thereby, stimulation of human MSC proliferation. This study delineates an alternate signalling pathway of cADPR that is distinct from its well-established role of serving as a Ca(2+) messenger for mobilizing the internal Ca(2+) stores. Whether cADPR can be used clinically for stimulating marrow function in patients with marrow disorders remains to be further studied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号