首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Viral persistence is associated with hierarchical antiviral CD8 T cell exhaustion with increased programmed death-1 (PD-1) expression. In HCV persistence, HCV-specific CD8 T cells from the liver (the site of viral replication) display increased PD-1 expression and a profound functional impairment that is not reversed by PD-1 blockade alone. Here, we report that the inhibitory receptor cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is preferentially upregulated in PD-1+ T cells from the liver but not blood of chronically HCV-infected patients. PD-1/CTLA-4 co-expression in intrahepatic T cells was associated with a profound HCV-specific effector dysfunction that was synergistically reversed by combined PD-1/CTLA-4 blockade in vitro, but not by blocking PD-1 or CTLA-4 alone. A similar effect was observed in circulating HCV-specific CD8 T cells with increased PD-1/CTLA-4 co-expression during acute hepatitis C. The functional response to combined blockade was directly associated with CTLA-4 expression, lost with CD28-depletion and CD4-independent (including CD4+FoxP3+ Tregs). We conclude that PD-1 and CTLA-4 pathways both contribute to virus-specific T cell exhaustion at the site of viral replication by a redundant mechanism that requires combined PD-1/CTLA-4 blockade to reverse. These findings provide new insights into the mechanisms of virus-specific T cell dysfunction, and suggest that the synergistic effect by combined inhibitory receptor blockade might have a therapeutic application against chronic viral infection in vivo, provided that it does not induce autoimmunity.  相似文献   

2.
Functional impairment of HIV-specific CD4(+) T cells during chronic HIV infection is closely linked to viral replication and thought to be due to T cell exhaustion. Programmed death 1 (PD-1) has been linked to T cell dysfunction in chronic viral infections, and blockade of the PD-1 pathway restores HIV-specific CD4(+) and CD8(+) T cell function in HIV infection. This study extends those findings by directly examining PD-1 expression on virus-specific CD4(+) T cells. To investigate the role of PD-1 in HIV-associated CD4(+) T cell dysfunction, we measured PD-1 expression on blood and lymph node T cells from HIV-infected subjects with chronic disease. PD-1 expression was significantly higher on IFN-gamma-producing HIV-specific CD4(+) T cells compared with total or CMV-specific CD4(+) T cells in untreated HIV-infected subjects (p = 0.0001 and p < 0.0001, respectively). PD-1 expression on HIV-specific CD4(+) T cells from subjects receiving antiretroviral therapy was significantly reduced (p = 0.007), and there was a direct correlation between PD-1 expression on HIV-specific CD4(+) T cells and plasma viral load (r = 0.71; p = 0.005). PD-1 expression was significantly higher on HIV-specific T cells in the lymph node, the main site of HIV replication, compared with those in the blood (p = 0.0078). Thus, PD-1 expression on HIV-specific CD4(+) T cells is driven by persistent HIV replication, providing a potential target for enhancing the functional capacity of HIV-specific CD4(+) T cells.  相似文献   

3.
Cytotoxic CD8+ T cells are essential for the control of viral liver infections, such as those caused by HBV or HCV. It is not entirely clear whether CD4+ T-cell help is necessary for establishing anti-viral CD8+ T cell responses that successfully control liver infection. To address the role of CD4+ T cells in acute viral hepatitis, we infected mice with Lymphocytic Choriomeningitis Virus (LCMV) of the strain WE; LCMV-WE causes acute hepatitis in mice and is cleared from the liver by CD8+ T cells within about two weeks. The role of CD4+ T-cell help was studied in CD4+ T cell-lymphopenic mice, which were either induced by genetic deficiency of the major histocompatibility (MHC) class II transactivator (CIITA) in CIITA−/− mice, or by antibody-mediated CD4+ cell depletion. We found that CD4+ T cell-lymphopenic mice developed protracted viral liver infection, which seemed to be a consequence of reduced virus-specific CD8+ T-cell numbers in the liver. Moreover, the anti-viral effector functions of the liver-infiltrating CD8+ T cells in response to stimulation with LCMV peptide, notably the IFN-γ production and degranulation capacity were impaired in CIITA−/− mice. The impaired CD8+ T-cell function in CIITA−/− mice was not associated with increased expression of the exhaustion marker PD-1. Our findings indicate that CD4+ T-cell help is required to establish an effective antiviral CD8+ T-cell response in the liver during acute viral infection. Insufficient virus control and protracted viral hepatitis may be consequences of impaired initial CD4+ T-cell help.  相似文献   

4.
The role of PD-1 expression on CD4 T cells during HIV infection is not well understood. Here, we describe the differential expression of PD-1 in CD127high CD4 T cells within the early/intermediate differentiated (EI) (CD27highCD45RAlow) T cell population among uninfected and HIV-infected subjects, with higher expression associated with decreased viral replication (HIV-1 viral load). A significant loss of circulating PD-1highCTLA-4low CD4 T cells was found specifically in the CD127highCD27highCD45RAlow compartment, while initiation of antiretroviral treatment, particularly in subjects with advanced disease, reversed these dynamics. Increased HIV-1 Gag DNA was also found in PD-1high compared to PD-1low ED CD4 T cells. In line with an increased susceptibility to HIV infection, PD-1 expression in this CD4 T cell subset was associated with increased activation and expression of the HIV co-receptor, CCR5. Rather than exhaustion, this population produced more IFN-g, MIP1-a, IL-4, IL-10, and IL-17a compared to PD-1low EI CD4 T cells. In line with our previous findings, PD-1high EI CD4 T cells were also characterized by a high expression of CCR7, CXCR5 and CCR6, a phenotype associated with increased in vitro B cell help. Our data show that expression of PD-1 on early-differentiated CD4 T cells may represent a population that is highly functional, more susceptible to HIV infection and selectively lost in chronic HIV infection.  相似文献   

5.
As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an “immune exhaustion”, with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28CD57+CD8+ T cells between the groups. However, the frequency of Tim-3+CD8+ and Tim-3+CD4+ exhausted T cells, but not PD-1+ T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1+CD8+ T cells were directly associated with T cell immune activation in children. The frequency of Tim-3+CD8+ T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.  相似文献   

6.
7.
The majority of people infected with hepatitis C virus (HCV) fail to generate or maintain a T-cell response effective for viral clearance. Evidence from murine chronic viral infections shows that expression of the coinhibitory molecule PD-1 predicts CD8+ antiviral T-cell exhaustion and may contribute to inadequate pathogen control. To investigate whether human CD8+ T cells express PD-1 and demonstrate a dysfunctional phenotype during chronic HCV infection, peripheral and intrahepatic HCV-specific CD8+ T cells were examined. We found that in chronic HCV infection, peripheral HCV-specific T cells express high levels of PD-1 and that blockade of the PD-1/PD-L1 interaction led to an enhanced proliferative capacity. Importantly, intrahepatic HCV-specific T cells, in contrast to those in the periphery, express not only high levels of PD-1 but also decreased interleukin-7 receptor alpha (CD127), an exhausted phenotype that was HCV antigen specific and compartmentalized to the liver, the site of viral replication.  相似文献   

8.
PD-1 expression is generally associated with exhaustion of T cells during chronic viral infections based on the finding that PD-1 expressing cells respond poorly to antigen activation and blockade of PD-1/PD-ligand interaction restores such antigen specific responses in vitro. We tested this hypothesis by examining PD-1 expression on virus-specific CD8 T cells and total T cells in vivo to determine whether PD-1 expression constitutes a reliable marker of immune exhaustion during SIV infection. The expression of PD-1 and Ki67 was monitored longitudinally on T cell subsets in peripheral blood, bone marrow, lymph node and rectal biopsy specimens from rhesus macaques prior to and post infection with pathogenic SIVmac239. During the course of infection, a progressive negative correlation was noted between PD-1 density and Ki67 expression in p11CM+ CD8+ T cells, as seen in other studies. However, for total and memory CD4 and CD8 T cells, a positive correlation was observed between PD-1 and Ki67 expression. Thus, while the levels of non-proliferating PD-1+ p11CM+ CD8 T cells were markedly elevated with progressing infection, such an increase was not seen on total T cells. In addition, total memory PD1+ T cells exhibited higher levels of CCR5 than PD-1 T cells. Interestingly, few PD-1+ CD8+ T cells expressed CCR7 compared to PD-1+ CD4 T cells and PD-1 T cells. In conclusion, overall PD1+ T cells likely represent a particular differentiation stage or trafficking ability rather than exhaustion and in the context of chronic SIV infection, the level of PD-1 expression by T cells does not by itself serve as a reliable marker for immune exhaustion.  相似文献   

9.
We monitored expression of PD-1 (a mediator of T-cell exhaustion and viral persistence) on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells from blood and liver during acute and chronic infections and after the resolved infection stage. PD-1 expression on HCV-specific T cells was high early in acute infection irrespective of clinical outcome, and most cells continued to express PD-1 in resolved and chronic stages of infection; intrahepatic expression levels were especially high. Our results suggest that an analysis of PD-1 expression alone is not sufficient to predict infection outcome or to determine T-cell functionality in HCV infection.  相似文献   

10.
The PD-1/PD-L pathway plays a major role in regulating T-cell exhaustion during chronic viral infections in animal models, as well as in humans, and blockade of this pathway can revive exhausted CD8+ T cells. We examined the expression of PD-1 and its ligands, PD-L1 and PD-L2, in multiple tissues during the course of chronic viral infection and determined how the amount of PD-1 expressed, as well as the anatomical location, influenced the function of exhausted CD8 T cells. The amount of PD-1 on exhausted CD8 T cells from different anatomical locations did not always correlate with infectious virus but did reflect viral antigen in some tissues. Moreover, lower expression of PD-L1 in some locations, such as the bone marrow, favored the survival of PD-1Hi exhausted CD8 T cells, suggesting that some anatomical sites might provide a survival niche for subpopulations of exhausted CD8 T cells. Tissue-specific differences in the function of exhausted CD8 T cells were also observed. However, while cytokine production did not strictly correlate with the amount of PD-1 expressed by exhausted CD8 T cells from different tissues, the ability to degranulate and kill were tightly linked to PD-1 expression regardless of the anatomical location. These observations have implications for human chronic infections and for therapeutic interventions based on blockade of the PD-1 pathway.Chronic viral infections are often associated with CD8+ T-cell dysfunction (30). This dysfunction, termed exhaustion, includes defects in the ability to produce antiviral cytokines, poor cytotoxicity, a loss of antigen-independent self-renewal, and the inability to vigorously re-expand following antigen exposure (30). These functional deficiencies contrast with the highly functional memory CD8+ T cells that are generated after acute infection and maintained via interleukin-7 (IL-7)- and IL-15-mediated homeostatic proliferation (30). During chronic viral infections, T-cell exhaustion often correlates with poor control of viral replication (3, 8, 38, 39). Thus, there is considerable interest in developing strategies to reverse exhaustion and restore function in virus-specific CD8+ T cells during chronic infections.Recent studies have revealed an important role for the negative regulatory molecule PD-1 in CD8 T-cell exhaustion during chronic viral infections (29). PD-1, a member of the CD28/CTLA-4 family of costimulatory/coinhibitory receptors, contains both ITIM and ITSM motifs in the intracellular tail and can deliver negative signals, at least partly via recruitment of the phosphatase Shp-2 (29). A role for PD-1 in regulating T-cell responses to chronic viral infections was first observed using lymphocytic choriomeningitis virus (LCMV) infection of mice, where PD-1 was found to be highly expressed on exhausted CD8+ T cells from chronically infected animals but not on functional memory CD8+ T cells from mice that had cleared an acute strain of the virus (3). In vivo blockade of the PD-1 pathway led to a dramatic increase in the number of virus-specific CD8+ T cells, improved functionality of these cells, and enhanced control of viral replication (3). These observations were extended to human chronic viral infections, and a series of studies have demonstrated that human immunodeficiency virus (HIV)-, hepatitis C virus (HCV)-, and HBV-specific CD8+ T cells upregulate PD-1 in humans compared to CD8+ T cells specific for nonpersisting viruses such as influenza virus or vaccinia virus (6-8, 24, 26, 32, 33, 42). Increasing PD-1 expression also correlates with disease status during HIV infection (8, 42). In vitro blockade of PD-1-PD-L interactions can reinvigorate exhausted virus-specific T-cell responses in humans and appears to have a prominent impact on proliferative expansion and/or prevention of apoptosis in these cases (9, 24, 32). Finally, recent results from in vivo blockade in the macaque simian immunodeficiency virus (SIV) infection model demonstrated the effectiveness of blocking PD-1 in primates during chronic viral infection (36). In these studies, PD-1 blockade enhanced virus-specific T and B-cell responses, lowered viral load, and improved the survival of chronically infected animals. Thus, PD-1 has emerged as not only a major regulator of T-cell exhaustion and viral control during chronic infection but also as an important potential therapeutic target.Despite these important studies and the clear impact of PD-1 blockade on the reversal of T-cell exhaustion, important questions remain. For example, previous work has demonstrated that PD-1 expression is not uniform on subsets of exhausted CD8 T cells (4). However, the expression of PD-1 on exhausted CD8 T cells in multiple tissues, and the relationship between PD-1 expression in these tissues to viral load, the PD-1 ligands and function has not been examined. Given the nonlymphoid accumulation of virus-specific CD8 T cells during chronic viral infections (11, 39) and the predilection of many important chronic infections for replicating in anatomically restricted locations (e.g., HCV and the liver, HIV and mucosal tissues, etc.), the dynamics of PD-1 expression by exhausted CD8 T cells outside the blood and spleen could have important therapeutic implications.In the present study we examined these issues using the mouse model of LCMV infection. Our results demonstrate that exhausted CD8 T cells have a wide range of PD-1 expression in different tissues of chronically infected mice. Virus-specific CD8 T cells in some anatomical locations such as the liver, brain, and bone marrow (BM) expressed high PD-1 for substantially longer than virus-specific CD8+ T cells from the spleens or blood of the same mice. Although PD-1 expression in the spleen correlated well with reduced gamma interferon (IFN-γ) and tumor necrosis factor (TNF) production, the PD-1Hi virus-specific CD8+ T cells from the BM remained capable of producing antiviral cytokines ex vivo. In contrast, a strong negative correlation between PD-1 expression and cytotoxicity existed for exhausted CD8 T cells from all tissues tested. PD-L1 expression was high in the spleen, whereas in the BM antigen-presenting cell (APC) populations expressed lower amounts of PD-L1. Survival of PD-1Hi CD8+ T cells from the BM was decreased in the presence of splenic APCs, suggesting that different tissue microenvironments in vivo could selectively support the persistence of PD-1Hi exhausted CD8 T cells. Since PD-1 expression differs by anatomical location, these observations suggest that PD-1 blockade in vivo will have varying impacts on exhausted CD8 T cells from different tissues or anatomical locations. These observations have implications for human chronic infections such as HBV, HCV, and HIV.  相似文献   

11.
12.
Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.  相似文献   

13.
Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.  相似文献   

14.
15.
Tzeng HT  Tsai HF  Liao HJ  Lin YJ  Chen L  Chen PJ  Hsu PN 《PloS one》2012,7(6):e39179
Persistent hepatitis B viral (HBV) infection results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Recent studies in animal models of viral infection indicate that the interaction between the inhibitory receptor, programmed death (PD)-1, on lymphocytes and its ligand (PD-L1) play a critical role in T-cell exhaustion by inducing T-cell inactivation. High PD-1 expression levels by peripheral T-lymphocytes and the possibility of improving T-cell function by blocking PD-1-mediated signaling confirm the importance of this inhibitory pathway in inducing T-cell exhaustion. We studied T-cell exhaustion and the effects of PD-1 and PD-L1 blockade on intrahepatic infiltrating T-cells in our recently developed mouse model of HBV persistence. In this mouse animal model, we demonstrated that there were increased intrahepatic PD-1-expressing CD8+ and CD4+ T cells in mice with HBV persistence, but PD-1 upregulation was resolved in mice which had cleared HBV. The Intrahepatic CD8+ T-cells expressed higher levels of PD-1 and lower levels of CD127 in mice with HBV persistence. Blockade of PD-1/PD-L1 interactions increased HBcAg-specific interferon (IFN)-γ production in intrahepatic T lymphocytes. Furthermore, blocking the interaction of PD-1 with PD-L1 by an anti-PD-1 monoclonal antibody (mAb) reversed the exhausted phenotype in intrahepatic T lymphocytes and viral persistence to clearance of HBV in vivo. Our results indicated that PD-1 blockage reverses immune dysfunction and viral persistence of HBV infection in a mouse animal model, suggesting that the anti-PD-1 mAb might be a good therapeutic candidate for chronic HBV infection.  相似文献   

16.
Hepatitis B virus (HBV) persistence is facilitated by exhaustion of CD8 T cells that express the inhibitory receptor programmed cell death-1 (PD-1). Improvement of the HBV-specific T cell function has been obtained in vitro by inhibiting the PD-1/PD-ligand 1 (PD-L1) interaction. In this study, we examined whether in vivo blockade of the PD-1 pathway enhances virus-specific T cell immunity and leads to the resolution of chronic hepadnaviral infection in the woodchuck model. The woodchuck PD-1 was first cloned, characterized, and its expression patterns on T cells from woodchucks with acute or chronic woodchuck hepatitis virus (WHV) infection were investigated. Woodchucks chronically infected with WHV received a combination therapy with nucleoside analogue entecavir (ETV), therapeutic DNA vaccination and woodchuck PD-L1 antibody treatment. The gain of T cell function and the suppression of WHV replication by this therapy were evaluated. We could show that PD-1 expression on CD8 T cells was correlated with WHV viral loads during WHV infection. ETV treatment significantly decreased PD-1 expression on CD8 T cells in chronic carriers. In vivo blockade of PD-1/PD-L1 pathway on CD8 T cells, in combination with ETV treatment and DNA vaccination, potently enhanced the function of virus-specific T cells. Moreover, the combination therapy potently suppressed WHV replication, leading to sustained immunological control of viral infection, anti-WHs antibody development and complete viral clearance in some woodchucks. Our results provide a new approach to improve T cell function in chronic hepatitis B infection, which may be used to design new immunotherapeutic strategies in patients.  相似文献   

17.
We have previously demonstrated that immunotherapy combining agonistic anti-CD40 and IL-2 (IT) results in synergistic anti-tumor effects. IT induces expansion of highly cytolytic, antigen-independent “bystander-activated” (CD8+CD44high) T cells displaying a CD25NKG2D+ phenotype in a cytokine dependent manner, which were responsible for the anti-tumor effects. While much attention has focused on CD4+ T cell help for antigen-specific CD8+ T cell expansion, little is known regarding the role of CD4+ T cells in antigen-nonspecific bystander-memory CD8+ T cell expansion. Utilizing CD4 deficient mouse models, we observed a significant expansion of bystander-memory T cells following IT which was similar to the non-CD4 depleted mice. Expanded bystander-memory CD8+ T cells upregulated PD-1 in the absence of CD4+ T cells which has been published as a hallmark of exhaustion and dysfunction in helpless CD8+ T cells. Interestingly, compared to CD8+ T cells from CD4 replete hosts, these bystander expanded cells displayed comparable (or enhanced) cytokine production, lytic ability, and in vivo anti-tumor effects suggesting no functional impairment or exhaustion and were enriched in an effector phenotype. There was no acceleration of the post-IT contraction phase of the bystander memory CD8+ response in CD4-depleted mice. The response was independent of IL-21 signaling. These results suggest that, in contrast to antigen-specific CD8+ T cell expansion, CD4+ T cell help is not necessary for expansion and activation of antigen-nonspecific bystander-memory CD8+ T cells following IT, but may play a role in regulating conversion of these cells from a central memory to effector phenotype. Additionally, the expression of PD-1 in this model appears to be a marker of effector function and not exhaustion.  相似文献   

18.
19.
Exhausted CD8+ T cell responses during chronic viral infections are defined by a complex expression pattern of inhibitory receptors. However, very little information is currently available about the coexpression patterns of these receptors on human virus-specific CD8+ T cells and their correlation with antiviral functions, T cell differentiation and antigen recognition. We addressed these important aspects in a cohort of 38 chronically HCV infected patients and found a coexpression of inhibitory receptors such as 2B4, CD160 and KLRG1 in association with PD-1 in about half of the HCV-specific CD8+ T cell responses. Importantly, this exhaustive phenotype was associated with low and intermediate levels of CD127 expression, an impaired proliferative capacity, an intermediate T cell differentiation stage and absence of sequence variations within the corresponding epitopes, indicating ongoing antigen triggering. In contrast, a low expression of inhibitory receptors by the remaining HCV-specific CD8+ T cells occurred in concert with a CD127hi phenotype, an early T cell differentiation stage and presence of viral sequence variations within the corresponding epitopes. In sum, these results suggest that T cell exhaustion contributes to the failure of about half of HCV-specific CD8+ T cell responses and that it is determined by a complex interplay of immunological (e.g. T cell differentiation) and virological (e.g. ongoing antigen triggering) factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号