首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Allergic sheep with antigen-induced early and late responses were used to determine whether airway hyperresponsiveness (AHR) to carbachol is present during the late response and whether blocking the late response with the leukotriene D4 (LTD4) antagonist MK-571 also blocks this AHR. To do this, we first showed that MK-571 blocked the antigen-induced late response, and then, in a separate study, we determined the effect of MK-571 treatment on airway responsiveness 6 h after antigen challenge (at the start of the late response). MK-571 (5 mg, by metered dose inhaler) given 30 min before and 4 h after Ascaris suum challenge had no effect on the acute response to antigen but blocked (P less than 0.05) the late response compared with placebo (n = 7). In the second study (n = 6), the antigen-induced acute increases in mean specific lung resistance (sRL) were also similar in the placebo (249%) and drug trials (247%). By 6 h postchallenge, however, mean sRL in the placebo trial began to increase (54%, P less than 0.05), whereas in the drug trial mean sRL was baseline. Nevertheless, AHR was apparent in both trials as indicated by a mean twofold leftward shift in the dose-response curves to inhaled carbachol (P less than 0.05 vs. prechallenge). Bronchoalveolar lavage at 6 h showed that MK-571 did not prevent the inflammatory cell influx into the lung. These observations suggest that although LTD4 may be a mediator of the late response in sheep, it is not a primary mediator affecting cholinergic AHR during this period.  相似文献   

2.
Late-phase bronchial vascular responses in allergic sheep   总被引:1,自引:0,他引:1  
Sheep were classified on the basis of their airway response to Ascaris suum antigen aerosols as allergic or nonsensitive. Allergic sheep were classed as acute or dual responders. Acute responders had only an immediate increase in mean airflow resistance after antigen, whereas dual responders had an immediate and late-phase (6-8 h after antigen challenge) increase in mean airflow resistance; nonsensitive sheep had minimal airway responses to antigen (less than 30% increase from base line). The sheep were anesthetized 2 wk later and, after a left thoracotomy, were challenged with antigen to determine bronchial vascular responses; bronchial artery blood flow was measured with an electromagnetic flow probe. Airway responses to antigen aerosol challenge were similar in the anesthetized and conscious animals. The mean fall in bronchial vascular resistance (BVR) immediately after antigen challenge was similar in acute and dual responders (41 +/- 7 and 47 +/- 9% of base line, respectively). In dual responders, late-phase airway responses were preceded by a significant increase from base line in Qbr and a fall in bronchovascular resistance (BVR). The mean fall in BVR 6-8 h after antigen challenge in documented dual responders was significantly different from bronchial vascular responses in acute responders (59 +/- 3 vs. 89 +/- 10%, respectively). Sheep without airway responses to A. suum had no significant changes in bronchial hemodynamics or airways mechanics. Late-phase-associated changes in BVR are a specific response to antigen challenge and may be a sensitive index of mediators being released.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Important features of this exaggerated response to bronchoconstrictive stimuli have mostly been investigated in vivo in intact animals or in vitro in isolated tracheal or bronchial tissues. Both approaches have important advantages but also certain limitations. Therefore, the aim of our study was to develop an ex vivo model of isolated lungs from sensitized mice for the investigation of airway responsiveness (AR). BALB/c mice were sensitized by intraperitoneal ovalbumin (Ova) and subsequently challenged by Ova inhalation. In vivo AR was measured in unrestrained animals by whole body plethysmography after stimulation with aerosolized methacholine (MCh) with determination of enhanced pause (P(enh)). Twenty-four hours after each P(enh) measurement, airway resistance was continuously registered in isolated, perfused, and ventilated lungs on stimulation with inhaled or intravascular MCh or nebulized Ova. In a subset of experiments, in vivo AR was additionally measured in orotracheally intubated, spontaneously breathing mice 24 h after P(enh) measurement, and lungs were isolated further 24 h later. Isolated lungs of allergen-sensitized and -challenged mice showed increased AR after MCh inhalation or infusion as well as after specific provocation with aerosolized allergen. AR was increased on days 2 and 5 after Ova challenge and had returned to baseline on day 9. AHR in isolated lungs after aerosolized or intravascular MCh strongly correlated with in vivo AR. Pretreatment of isolated lungs with the beta(2)-agonist fenoterol diminished AR. In conclusion, this model provides new opportunities to investigate mechanisms of AHR as well as pharmacological interventions on an intact organ level.  相似文献   

4.
Allergic sheep respond to inhaled Ascaris suum antigen with either acute and late bronchial obstructions (dual responders) or only acute bronchoconstriction (acute responders). In this study we tested the hypothesis that one factor which may distinguish between these two populations is the difference in sensitivity to a specific mediator of airway anaphylaxis, leukotriene (LT) D4 (a major component of slow reacting substance of anaphylaxis). We postulated that if the hypothesis was correct then dual responders should demonstrate increased airway responses to inhaled LTD4 and that this increased responsiveness should also be reflected by a more severe response to inhaled antigen. To test this we used animals from both groups with the same degree of non-specific airway responsiveness to carbachol and determined their airway responses to controlled inhalation challenges with synthetic LTD4 and Ascaris suum antigen. Airway responsiveness to carbachol was determined by measuring the change in specific lung resistance (SRL) to increasing concentrations of carbachol aerosol, and then identifying, by linear interpolation, the provocative carbachol concentration which produced a 150% increase (PC150) in SRL. Airway responses to LTD4, and antigen were determined by measuring the percentage change in SRL after a controlled inhalation challenge with either aerosol. Airway responsiveness to carbachol was not different between the two groups. There was, however, a difference (p less than 0.05) in the airway response to the same dose of LTD4 in the two groups. Dual responders showed a 297 +/- 72% increase in SRL as compared to a 90 +/- 13% increase in SRL in the acute responders. Dual responders also showed a greater immediate and more prolonged response to antigen than did acute responders. These results suggest that increased responsiveness to LTD4 may be one factor which may distinguish dual responders from acute responders.  相似文献   

5.
Adrenomedullin (ADM), a newly identified vasodilating peptide, is reported to be expressed in lungs and have a bronchodilating effect. We hypothesized whether ADM could be involved in the pathogenesis of bronchial asthma. We examined the role of ADM in airway responsiveness using heterozygous ADM-deficient mice (AM+/-) and their littermate control (AM+/+). Here, we show that airway responsiveness is enhanced in ADM mutant mice after sensitization and challenge with ovalbumin (OVA). The immunoreactive ADM level in the lung tissue after methacholine challenge was significantly greater in the wild-type mice than that in the mutant. However, the impairment of ADM gene function did not affect immunoglobulins (OVA-specific IgE and IgG1), T helper 1 and 2 cytokines, and leukotrenes. Thus the conventional mechanism of allergen-induced airway responsiveness is not relevant to this model. Furthermore, morphometric analysis revealed that eosinophilia and airway hypersecretion were similarly found in both the OVA-treated ADM mutant mice and the OVA-treated wild-type mice. On the other hand, the area of the airway smooth muscle layer of the OVA-treated mutant mice was significantly greater than that of the OVA-treated wild-type mice. These results suggest that ADM gene disruption may be associated with airway smooth muscle hyperplasia as well as enhanced airway hyperresponsiveness. ADM mutant mice might provide novel insights to study the pathophysiological role of ADM in vivo.  相似文献   

6.
Ascaris suum antigen effects on mean airflow resistance (RL) and bronchial arterial blood flow (Qbr) were studied in allergic anesthetized sheep with documented airway responses. Qbr was measured with electromagnetic flow probes, and supplemental O2 prevented antigen-induced hypoxemia. Aerosol challenge with this specific antigen increased RL and Qbr significantly. Cromolyn sodium aerosol pretreatment prevented antigen-induced increases in RL but not in Qbr. Intravenous cromolyn, however, prevented increases in Qbr and RL, suggesting a role for mast cell degranulation in both bronchomotor and bronchovascular responses to antigen. Antigen-induced increases in Qbr were not solely attributable to histamine release. Indomethacin pretreatment attenuated the antigen-induced increase in Qbr, thus suggesting that vasodilator cyclooxygenase products contribute to the vascular response. Antigen challenge significantly decreased Qbr after indomethacin and metiamide pretreatment, which suggests that vasoconstrictor substances released after antigen exposure also modulate Qbr; however, released vasodilators overshadow vasoconstrictor effects. Thus antigen challenge affects Qbr by locally releasing histamine and vasodilator prostaglandins as well as vasoconstrictor substances. These effects were independent of antigen-induced changes in systemic and pulmonary hemodynamics.  相似文献   

7.
We established a diphtheria toxin (DT)-based conditional deletion system using Il4 enhancer elements previously shown to be specific for IL-4 production in mast cells (MCs) or basophils (Mas-TRECK and Bas-TRECK mice). DT treatment of Bas-TRECK mice resulted in specific deletion of basophils, whereas both MCs and basophils were deleted in Mas-TRECK mice. DT-treated Mas-TRECK mice had impaired passive cutaneous anaphylaxis, IgE-mediated passive systemic anaphylaxis, and IgE-mediated chronic allergic inflammation, whereas DT-treated Bas-TRECK mice had impaired IgE-mediated chronic allergic inflammation. Using these mice, we also sought to tease out the role of MCs and basophils in airway hyperresponsiveness (AHR). Although MC deletion resulted in a slight increase in basal Ag-specific IgE levels and significant increases in basal IgE levels, we found that this deletion markedly impaired the AHR effector phase and was accompanied by decreased histamine levels. By contrast, basophil deletion had no effect on the AHR effector phase or on IgE production induced by systemic OVA immunization. Our results, using these newly established Mas-TRECK and Bas-TRECK models, demonstrated an indispensable role for MCs as effector cells in AHR.  相似文献   

8.
9.
It has been shown that the presence of certain helminth infections in humans, including schistosomes, may reduce the propensity to develop allergies in infected populations. Using a mouse model of schistosome worm vs worm + egg infection, our objective was to dissect the mechanisms underlying the inverse relationship between helminth infections and allergies. We have demonstrated that conventional Schistosoma mansoni egg-laying male and female worm infection of mice exacerbates airway hyperresponsiveness. In contrast, mice infected with only schistosome male worms, precluding egg production, were protected from OVA-induced airway hyperresponsiveness. Worm-infected mice developed a novel modified type 2 cytokine response in the lungs, with elevated allergen-specific IL-4 and IL-13 but reduced IL-5, and increased IL-10. Although schistosome worm-only infection is a laboratory model, these data illustrate the complexity of schistosome modulation of host immunity by the worm vs egg stages of this helminth, with the potential of infections to aggravate or suppress allergic pulmonary inflammation. Thus, infection of mice with a human parasitic worm can result in reduced airway inflammation in response to a model allergen.  相似文献   

10.
Allergic sheep respond to inhaled antigen with either acute and late bronchial obstructions (dual responders) or only acute bronchoconstriction (acute responders). In this study we tested the hypothesis that one factor which may distinguish between these two populations is the difference in sensitivity to a specific mediator of airway anaphylaxis, leukotriene (LT) D4 (a major component of slow reacting substance of anaphylaxis). We postulated that if the hypothesis was correct than dual responders should demonstrate increased airway responses to inhaled LTD4 and that this increased responsiveness should also be reflected by a more severe response to inhaled antigen. To test this we used animals from both groups with the same degree of non-specific airway responsiveness to carbachol and determined their airway responses to controlled inhlation challenges with synthetic LTD4 and antigen. Airway responsiveness to carbachol was determined by measuring the change in specific lung resistance (SRL) to increasing concentrations of carbachol aerosol, and then identifying, by linear interpolation, the provocative carbachol concentration which produced a 150% increase (PC150) in SRL. Airway responses to LTD4, and antigen were determined by measuring the percentage change in SRL after a controlled inhlation challenge with either aerosol. Airway responsiveness to carbachol was not different between the two groups. There was, however, a difference (p<0.05) in the airway response to the same dose of LTD4 in the two groups. Dual responders showed a 297±72% increase in SRL as compared to a 90±13% increase in SRL in the acute responders. Dual responders also showed a greater immediate and more prolonged response to antigen than did acute responders. These results suggest that increased responsiveness to LTD4 may be one factor which may distinguish dual responders from acute responders.  相似文献   

11.
We studied whether antigen-induced airway hyperresponsiveness was associated with pulmonary inflammation in 11 anesthetized ragweed-sensitized dogs. Airway responsiveness to acetylcholine aerosol was determined before and at 2, 6, and 24 h after ragweed or sham aerosol challenge. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) performed at either 2 or 6 h. Total pulmonary resistance increased 11-fold at 5 min after ragweed. Airway responsiveness was unchanged at 2 h but was increased 6.6-fold at 6 h in 8 of 11 dogs (P less than 0.001); hyperresponsiveness persisted from 4 days to 4 mo. Airway responsiveness was unchanged by aerosols of diluent. Neutrophils in BAL fluid increased approximately sixfold at 2 h (P less than 0.02) and at 6 h (P less than 0.02) after antigen challenge. There were fewer eosinophils in fluid recovered at 6 h after antigen compared with 2 h lavages (P less than 0.05). In three nonresponders, BAL showed no significant changes in neutrophils and eosinophils after antigen. Thus antigen-induced hyperresponsiveness is associated with the presence of pulmonary inflammation, presumably arising from the airways and involving both neutrophils and eosinophils.  相似文献   

12.
Qin XQ  Xiang Y  Liu C  Tan YR  Qu F  Peng LH  Zhu XL  Qin L 《生理学报》2007,59(4):454-464
气道高反应的发病机制目前仍然不清楚,但人多数人认同是气道的一种慢性炎症。近十年来,上皮缺陷学说逐渐成为解释气道高反应机制的主流观点。气道上皮不再被仅仅看作为单纯的机械屏障,而是机体内环境与外部环境相互作用的界面。气道上皮具有广泛的生理作用,包括抗氧化、内分泌和外分泌、黏液运输、生物代谢、结构性黏附、损伤修复、应激或炎症信号传递、抗原递呈作用等。借助这些生理作用,支气管上皮细胞在气道局部微环境稳态维持中发挥重要作用。有理由相信,气道上皮的结构完整性缺陷或功能紊乱是哮喘和慢性阻塞性肺疾病等气道高反应性疾病的启动环节。  相似文献   

13.
Asthma is one of the leading causes of childhood hospitalization, and its incidence is on the rise throughout the world. Currently, the standard treatment for asthma is the use of corticosteroids to try to suppress the inflammatory reaction taking place in the bronchial tree. Using a murine model of atopic allergic asthma employing a methacholine-hyperresponsive (A/J) as well as a hyporesponsive (C57BL/6) strain of mice sensitized and challenged with ovalbumin, we show that treatment with a synthetic Toll-like receptor 7 (TLR7) ligand (S-28463, a member of the imidazoquinoline family) prevents development of the asthmatic phenotype. Treatment with S-28463 resulted in a reduction of airway resistance and elastance following ovalbumin sensitization and challenge. This was accompanied by a dramatic reduction in infiltration of leukocytes, especially eosinophils, into the lungs of both C57BL/6 and A/J mice following OVA challenge. Treatment with S-28463 also abolished both the elevation in serum IgE level as well as the induction of IL-4, IL-5, and IL-13 by OVA challenge. The protective effects of S-28463 were also observed in MK2 knockout, but not MYD88 knockout, mice. We did not observe a switch in cytokine profile from T(H)2 to T(H)1, as both IL-12p70 and IFN-gamma levels were reduced following S-28463 treatment. These results clearly demonstrate the anti-inflammatory effect of imidazoquinolines in an allergic asthma model as well as the clinical potential of TLR7 ligands in the treatment of allergic diseases.  相似文献   

14.
There is very limited knowledge about the effects of alcohol on airway hyperresponsiveness and inflammation in asthma. Historical accounts of alcohol administration to patients with breathing problems suggest that alcohol may have bronchodilating properties. We hypothesized that alcohol exposure will alter airway hyperresponsiveness (AHR) and pulmonary inflammation in a mouse model of allergic asthma. To test this hypothesis, BALB/c mice were fed either 18% alcohol or water and then sensitized and challenged with ovalbumin (OVA). AHR was assessed by means of ventilation or barometric plethysmography and reported as either total lung resistance or enhanced pause, respectively. Airway inflammation was assessed by total and differential cell counts in bronchoalveolar lavage fluid (BALF), cytokine levels in BALF, lung histology, and serum immunoglobulin E (IgE) levels. Alcohol feeding significantly blocked methacholine-induced increases in AHR compared with water-fed controls. Alcohol feeding significantly reduced total cell numbers (64%) as well as the number of eosinophils (84%) recruited to the lungs of these mice. Modest changes in lung pathology were also observed. Alcohol exposure led to a reduction of IgE in the serum of the EtOH OVA mice. These data demonstrate that alcohol exposure blunts AHR and dampens allergic airway inflammation indices in allergic mice and suggest that there may be an important role for alcohol in the modulation of asthma. These data provide an in vivo basis for previous clinical observations in humans substantiating the bronchodilator properties of alcohol and for the first time demonstrates an alcohol-induced reduction of allergic inflammatory cells in a mouse model of allergic asthma.  相似文献   

15.
We compared the development of antigen-induced airway hyperresponsiveness (AHR) 24 h after challenge with Ascaris suum antigen in allergic sheep with acute (n = 7) and with dual (n = 7) airway responses and then attempted to modify this AHR. Cholinergic airway responsiveness was determined by measuring the carbachol dose required to increase specific lung resistance (sRL) 150% (i.e., PC150). Subsequently the sheep were challenged with antigen and sRL was measured at predetermined times to document the presence or absence of a late response. PC150 was redetermined 24 h later followed by bronchoalveolar lavage (BAL) to assess inflammation. Only dual responders developed AHR (PC150 decreased, P less than 0.05). There were no significant differences in BAL between the two groups. Six dual responders were then, on separate occasions (greater than or equal to 3 wk), pretreated with placebo, indomethacin (2 mg/kg iv), or a leukotriene antagonist, FPL-57231 (30 mg inhaled). Neither agent significantly affected the acute response to antigen. Only FPL pretreatment blocked the late response, but both agents blocked the antigen-induced AHR 24 h later. BAL at 24 h showed no significant differences. These results indicate that only dual responders develop AHR 24 h after antigen challenge. This AHR appears independent of the late increase in sRL or the severity of pulmonary inflammation. AHR appears to be sensitive to agents that interfere with the early release or actions of cyclooxygenase and lipoxygenase metabolites in dual responders.  相似文献   

16.
In addition to being an air pollutant, NO2 is a potent inflammatory oxidant generated endogenously by myeloperoxidase and eosinophil peroxidase. In these studies, we sought to determine the effects of NO2 exposure on mice with ongoing allergic airway disease pathology. Mice were sensitized and challenged with the antigen ovalbumin (OVA) to generate airway inflammation and subsequently exposed to 5 or 25 ppm NO2 for 3 days or 5 days followed by a 20-day recovery period. Whereas 5 ppm NO2 elicited no pathological changes, inhalation of 25 ppm NO2 alone induced acute lung injury, which peaked after 3 days and was characterized by increases in protein, LDH, and neutrophils recovered by BAL, as well as lesions within terminal bronchioles. Importantly, 25 ppm NO2 was also sufficient to cause AHR in mice, a cardinal feature of asthma. The inflammatory changes were ameliorated after 5 days of inhalation and completely resolved after 20 days of recovery after the 5-day inhalation. In contrast, in mice immunized and challenged with OVA, inhalation of 25 ppm NO2 caused a marked augmentation of eosinophilic inflammation and terminal bronchiolar lesions, which extended significantly into the alveoli. Moreover, 20 days postcessation of the 5-day 25 ppm NO2 inhalation regimen, eosinophilic and neutrophilic inflammation, pulmonary lesions, and AHR were still present in mice immunized and challenged with OVA. Collectively, these observations suggest an important role for NO2 in airway pathologies associated with asthma, both in modulation of degree and duration of inflammatory response, as well as in induction of AHR.  相似文献   

17.
We studied the effects of WEB-2086, a specific antagonist of platelet-activating factor (PAF), on the development of antigen-induced airway hyperresponsiveness and inflammation in sheep (n = 8). For these studies, airway responsiveness was determined from slopes of carbachol dose-response curves (DRC) performed at base line (prechallenge) and 2 h after Ascaris suum antigen challenges in the following three protocols: 1) antigen challenge alone (control trial), 2) WEB-2086 (1 mg/kg iv) given 30 min before antigen challenge (WEB pretreatment), and 3) WEB-2086 given 2 h after antigen challenge, immediately before the postchallenge DRC (WEB posttreatment). Airway inflammation was assessed by bronchoalveolar lavage (BAL) before antigen challenge and after the postchallenge DRC for each trial. A. suum challenge resulted in acute increases in specific lung resistance that were not different among the three trials. Antigen challenge (control trial) caused a 93% increase (P less than 0.05) in the slope of the carbachol DRC when compared with the prechallenge value. WEB pretreatment (1 mg/kg) reduced (P less than 0.05) this antigen-induced hyperresponsiveness, whereas pretreatment with a 3-mg/kg dose completely prevented it. WEB posttreatment was ineffective in blocking this hyperresponsiveness. BAL neutrophils increased after antigen challenge in the control trial and when WEB-2086 was given after antigen challenge (P less than 0.05). Pretreatment with WEB-2086 (1 or 3 mg/kg) prevented this neutrophilia. This study provides indirect evidence for antigen-induced PAF release in vivo and for a role of endogenous PAF in the modulation of airway responsiveness and airway inflammation after antigen-induced bronchoconstriction in sheep.  相似文献   

18.
Endogenous nitric oxide (NO) influences acetylcholine-inducedbronchovascular dilation in sheep and is a mediator of the airway smooth muscle inhibitory nonadrenergic, noncholinergic neural responsein several species. This study was designed to determine the importanceof NO as a neurally derived modulator of ovine airway and bronchialvascular smooth muscle. We measured the response of pulmonaryresistance (RL) and bronchialblood flow (br) to vagal stimulationin 14 anesthetized, ventilated, open-chest sheep duringthe following conditions: 1)control; 2) infusion of the -agonist phenylephrine to reduce baseline br bythe same amount as would be produced by infusion ofN-nitro-L-arginine(L-NNA), a NO synthaseinhibitor; 3) infusion ofL-NNA(102 M); and4) after administration of atropine(1.5 mg/kg). The results showed that vagal stimulation produced anincrease in RL andbr in periods 1, 2, and 3 (P < 0.01) that was not affected byL-NNA. Afteratropine was administered, there was no increase inbr or RL. Invitro experiments on trachealis smooth muscle contracted with carbachol showed no effect ofL-NNA on neural relaxation butshowed a complete blockade with propranolol(P < 0.01). In conclusion, thevagally induced airway smooth muscle contraction and bronchial vasculardilation are not influenced by NO, and the sheep's trachealis muscle,unlike that in several other species, does not have inhibitorynonadrenergic, noncholinergic innervation.

  相似文献   

19.
Activation of the alternative pathway of complement plays a critical role in the development of allergen-induced airway hyperresponsiveness (AHR) and inflammation in mice. Endogenous factor H, a potent inhibitor of the alternative pathway, is increased in the airways of sensitized and challenged mice, but its role in regulating inflammation or AHR has been unknown. We found that blocking the tissue-binding function of factor H with a competitive antagonist increased complement activation and tissue inflammation after allergen challenge of sensitized mice. Conversely, administration of a fusion protein that contains the iC3b/C3d binding region of complement receptor 2 linked to the inhibitory region of factor H, a molecule directly targeting complement-activating surfaces, protected mice in both primary and secondary challenge models of AHR and lung inflammation. Thus, although endogenous factor H does play a role in limiting the development of AHR, strategies to deliver the complement-regulatory region of factor H specifically to the site of inflammation provide greater protection than that afforded by endogenous regulators. Such an agent may be an effective therapy for the treatment of asthma.  相似文献   

20.
Intratracheal administration of interleukin-10 (IL-10) has been reported to inhibit allergic inflammation but augment airway hyperresponsiveness (AHR). In the present study, airway and smooth muscle responsiveness to methacholine (MCh) were compared in wild-type (WT) and IL-10-deficient (IL-10-KO) mice to investigate the role of endogenous IL-10 in AHR development. Naive WT and IL-10-KO mice exhibited similar dose-dependent increases in airway resistance (Raw) to intravenous MCh. Sensitization and challenge with ragweed (RW) induced a twofold increase in responsiveness to intravenous MCh in WT mice, but hyperresponsiveness was not observed in similarly treated IL-10-KO mice. Likewise, tracheal rings from RW-sensitized and -challenged WT mice exhibited a fourfold greater responsiveness to MCh than IL-10-KO tracheal preparations. Measurements of airway constriction by whole body plethysmography further supported the Raw and tracheal ring data (i.e., AHR was not observed in the absence of IL-10). Interestingly, factors previously implicated in the development of AHR, including IL-4, IL-5, IL-13, IgA, IgG1, IgE, eosinophilia, and lymphocyte recruitment to the airways, were upregulated in the IL-10-KO mice. Treatment with recombinant murine IL-10 at the time of allergen challenge reduced the magnitude of inflammation but reinstated AHR development in IL-10-KO mice. Adoptive transfer of mononuclear splenocytes to IL-10-sufficient severe combined immunodeficient mice indicated that lymphocytes were an important source of the IL-10 impacting AHR development. These results provide evidence that IL-10 expression promotes the development of allergen-induced smooth muscle hyperresponsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号