首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shredding stream invertebrates should have a positive influence on the breakdown rates of leaf litter via direct consumption and particle fragmentation. To determine the effects of shredder density on litter breakdown, breakdown of the emergent stream macrophyte, Nasturtium officinale , was investigated using three litter bag mesh sizes [fine (0.2 mm), medium (1 mm) and coarse (3 mm) mesh] and four stocking densities of the shredder, Gammarus pseudolimnaeus , (0, 4, 8 and 16 per bag). Watercress decayed very rapidly, with breakdown rates ( k values) ranging from 0.075 d-1 for fine mesh with no shredders to 0.24 d-1 for coarse mesh. Stocked Gammarus increased breakdown rates significantly in fine mesh bags (p < 0.001), but only marginally in medium mesh bags (p < 0.1). Breakdown rates also increased significantly with mesh size. A regression model showed a significant relation of breakdown rate to Gammarus density and mesh size. These results clearly show that shredders can significantly influence breakdown rates and can account for up to 30% of breakdown, but that mesh size effects such as particle size reduction and loss are also very important.  相似文献   

2.
树叶凋落物在受酸性矿山废水污染溪流中的分解   总被引:2,自引:0,他引:2  
为了解华南地区酸性矿山废水对溪流中树叶分解的影响,在广东省大宝山矿区附近的1条受酸性矿山废水污染(pH值为2.7—3.4且富含多种重金属元素)的3级溪流中,利用2种孔径(5ram的网袋和0.1ram的布袋)的分解网袋对2种树叶(人面子和蒲桃)进行了为期101d的树叶分解研究。结果表明,人面子树叶网袋和布袋中的树叶干重剩余率分别为39%和48%,而蒲桃树叶网袋和布袋中的干重剩余率仍保持较高的水平,分别为61%和70%。根据指数衰减模型计算出树叶分解的半衰期,人面子树叶在网袋和布袋中的分解半衰期分别为57d和69d,而蒲桃树叶则分别为14-4d和217d。蒲桃树叶的分解速率明显比人面子树叶慢。在网袋中定殖的底栖动物主要是集食者,其中优势类群为摇蚊幼虫,占底栖动物个体总数的99%。摇蚊种群在网袋中的数量波动对2种树叶分解速率的影响并不明显。结果表明,受酸性矿山废水的影响,底栖动物群落的多样性大为减少。同时由于各种金属氧化物在树叶表面的不断沉淀,使树叶处于缺氧状态,抑制了微生物的活动,导致树叶分解速率大为降低。  相似文献   

3.
We tested the hypothesis that the growth of fine roots upward into the leaf litter, forming a ‘surface root mat’, found widely in Amazonian forests, is of adaptive value for plants of poor soils because it makes possible more rapid uptake of limiting nutrients. We assessed the effect of invasion by fine roots on the rates of loss of dry mass and nutrient content of leaf litter over 1 year in three plots in each of three contrasting forest types in central Amazonia: the stunted facies of heath forest known as campina (SHF), the taller facies of heath forest known as campinarana (THF), both on spodosols, and the surrounding lowland evergreen rain forest (LERF) on ultisol. Pairs of bags filled with freshly fallen leaves from the trees of Clitoria fairchildiana (Fabaceae) were placed on the litter layer; in order to prevent roots entering the control bag in each pair that bag was lifted from the forest floor and turned over each week, while the treatment bag was left undisturbed. From each plot, four pairs of litter bags were retrieved after 30, 60, 120, 180, 270 and 360 d, and all roots that had grown into the litterbags were carefully removed. The leaves and roots from each bag were oven-dried for nutrient analysis. In no forest type was there a significant difference in the rate of loss of dry matter from the litter between the bags with and without roots. The amounts of roots invading the litter bags increased significantly in the sequence SHF < THF < LERF. In no forest did the presence of roots have a significant effect on the rate of disappearance of N or P from the leaf material, or on the rate of accumulation of Fe and Al. In the SHF there was no significant effect of invasion by roots on the rates of disappearance of Ca, Mg, Mn or Zn, but in the THF, the rates of disappearance of these four elements between 270 and 360 d were significantly greater in the presence of roots. In the LERF the results were similar, but the effects of roots started earlier—the rates of disappearance of Ca and Mg were significantly enhanced between 120 and 360 d. The results from the SHF may be interpreted to suggest that the growth of fine roots (and their fungal associates) upward into leaf litter is unlikely to be explained wholly by their role in the efficient recovery of mineral nutrients.  相似文献   

4.
The influence of invertebrates upon the decomposition ofPotamogeton pectinatus L. in a coastal Marina system was examined over 112 days using litter bags. Invertebrate inclusion bags (2 mm mesh, 5 mm holes) registered a dry mass loss of 1% d–1, while exclusion litter bags (80 µm mesh) produced a 0.4% mass loss d–1 (a 2.5 fold difference). Losses of ash and N from inclusion bags were greater than those from exclusion bags (p < 0.05). There was a three fold difference between the two treatments in the time taken for litter to breakdown to half the initial stock: T1/2 for inclusion bags = 43 d, exclusion bags = 130 d. In both treatments, minerals showed an expected rapid loss, due to leaching, with a subsequent slow increase relative to the dry material remaining. A total of nine invertebrate taxa was recorded from inclusion bags, with a peak biomass of 64 mg g–1 dry massPotamogeton bag–1 reached at 64 days after immersion. Grazing amphipods,Melita zeylanica Stebbing andAustrochiltonia subtenuis (Barnard), numerically dominated the litter bag fauna, whileM. zeylanica and nymphs of the zygopteran predatorIschnura senegalensis (Rambur) formed most of the biomass. Scanning Electron Microscopy indicated heavy grazing of micro-organisms by invertebrates, with major qualitative differences occurring 112 days after immersion. Invertebrates significantly accelerated the rate of litter breakdown through their feeding activities, assisting fragmentation and thus contributing to plant losses and also by increasing the surface area for microbial colonisation and attack.  相似文献   

5.
粤北地区溪流中的树叶分解及大型底栖动物功能摄食群   总被引:1,自引:0,他引:1  
颜玲  赵颖  韩翠香  童晓立 《应用生态学报》2007,18(11):2573-2579
利用2种孔径(5mm的塑料网袋和0.1mm的布袋)的分解网袋对2种树叶在广东北部的横石水河的3级溪流中,进行了为期101d的树叶分解研究.结果表明:人面子树叶在网袋和布袋中的分解速率分别为0.0247d-1和0.0151d-1;而蒲桃树叶的分解速率则分别为0.0108d-1和0.0095d-1.说明2种树叶在布袋中的分解速率均比网袋慢,且人面子树叶的分解速率比蒲桃树叶快.定殖在2种树叶网袋中的功能摄食群以刮食者的比例最高(36%),其次是集食者(33%)和捕食者(25%),撕食者的比例最低(6%).在实验中后期,人面子树叶上的底栖动物个体总数、优势类群数和密度显著高于蒲桃树叶.说明在亚热带地区的中等级别的溪流中,由于撕食者种类减少,刮食者的类群数及密度对树叶分解速率具有显著影响.对微生物活动的抑制作用和对底栖动物取食的驱避作用使富含单宁成分的蒲桃树叶的分解速率下降.  相似文献   

6.
Summary The effects of supplemental water and natural rainfall on decomposition were studied in the Negev Highland desert, Israel. There was a mass loss of approximately 40% in Hammada scoparia leaves and Salsola inermis litter placed on the soil surface and buried in fine mesh bags. There was an annual mass loss of 80% in S. inermis litter buried in large fiberglass mesh bags. Supplemental water provided during the wet season (January to March) did not result in more rapid decomposition of litter of the annual grass Stipa capensis but irrigation during the dry season (August to September) produced a marked increase in the decomposition rate of S. capensis. These data suggest that rain events, not water quantity, are the most important regulators of decomposition in the Negev. Annual rates of decomposition were higher than predicted by models utilizing actual evapotranspiration and lignin content as regulating variables. Rates of decomposition were equal to those reported for tropical wet forests.  相似文献   

7.
Summary Thein situ breakdown ofNymphoides peltata (Gmel.) O. Kuntze has been studied with special attention for methodology by: (1) using fresh and pre-dried material to establish the influence of pre-drying on breakdown and losses of nutrient stocks during decomposition; (2) enclosing different amounts of material in litter bags; (3) using litter bags with different mesh sizes, and (4) placing litter bags in water (floating leaves, petioles), on the sediment (long shoots) and in the hydrosoil (short shoots, roots). Of the material incubated in water, the floating leaves decomposed at a faster rate than the petioles, while the long shoots had the slowest breakdown. In the sediment the short shoots disappeared at a faster rate than the roots. By incubating the same morphological structure, both in the water and the sediment it appeared that the rate of breakdown was faster in the upper layers of the sediment. Pre-dried plant parts showed in water a larger initial weight loss than normal senescent plant parts, while in the sediment dried plant parts had a significantly slower loss of mass than the freshly incubated structures. Losses of nutrient stocks during decomposition were also markedly altered by pre-drying the material. When a larger amount ofNymphoides material was enclosed in the bags a tendency of a faster decay could be demonstrated. Macro-invertebrates colonized the litter bags with the 0.5 mm mesh size but usually could not-enter the 0.25 mm mesh size bags. The browsing of the detritivores did not result in a faster disappearance of organic matter, but organic matter must have been transported into the bags resulting in a larger amount of remaining organic matter when compared with the 0.25 mm mesh size bags.  相似文献   

8.
Summary In Jarrah (Eucalyptus marginata Donn ex Sm.) forest of south-western Australia dense germination and regeneration of the native legumeAcacia Pulchella R. Br. can occur following moderate to high intensity fire. The effect of this legume understorey on rate of decomposition and change in nutrient content ofE. marginata litter was investigated using the mesh bag techniques and by examining four components of forest floor litter representing increasing stages of decomposition. E. marginata leaf litter confined in mesh bags lost 37% of its initial dry weight in the first 8 months on the forest floor and 44% of its initial dry weight after 20 months. During this period weight loss was similar for leaf litter located in forest without legume understorey and for leaf litter placed under dense stands ofA. pulchella. MixingA. pulchella litter withE. marginata litter had no significant effect on rate ofE. marginata litter breakdown. The presence of understorey vegetation had a marked effect on chemical composition of decomposingE. marginata leaves. After 8 and 20 months exposure on the forest floor, leaf litter in mesh bags placed underA. pulchella understorey had significantly (P<0.001) higher concentration and contained significantly (P<0.001) greater amounts of N, P, K, S, Ca and Mg than leaf litter placed in areas without legume understorey. This effect was particularly marked for N and P. In forest without legume understorey the amounts of these two nutrients inE. marginata leaf litter changed little during the first 20 months of decomposition, but forE. marginata leaf litter in mesh bags underA. pulchella there were absolute gains of up to 68% in the amount of N and 109% in the amount of P during this period. This represents accumulation of N and P from sources outside the litter bags. The concentration of N, P, S, Ca and Mg were higher at each of the four stages of decomposition in eucalypt leaf litter collected from the forest floor beneathA. pulchella compared to eucalypt leaf litter collected in forest without understorey. Concentrations of N, P and S increased with stage of decomposition. Levels of these three nutrients in eucalypt litter from under the legume were 1.5 to 2.9 fold higher than in the same component of litter from forest without understorey. The effect of legume understorey on nutrient concentrations in the forest floor and on Cielement ratios in decomposing litter is discussed in relation to long term rates of litter breakdown and net mineralisation of litter nutrients.  相似文献   

9.
The dynamics of leaf breakdown in a headwater Colombian stream were evaluated for the native tree species Myrsine guianensis, Cupania latifolia and Nectandra lineatifolia using coarse and fine mesh litter bags. Ten bags of each species (five of each mesh size) were retrieved from the stream at 1, 8, 15, 30, 60 and 120 days. k values ranged from 0.0008 to 0.0058 day–1 and density of macroinvertebrates from 35 to 55 individuals per leaf bag, peaking at day 8. Myrsine guianensis degraded more rapidly than the other species for both coarse and fine mesh bags. This species and Nectandra lineatifolia presented differences in k values between coarse and fine mesh bags, suggesting that macroinvertebrates influenced the decay rate. Despite the low densities of macroinvertebrates found, shredders represented 12.7% of individuals and 50 to 68% of the invertebrate biomass in bags, indicating that this functional feeding group was an important component of fauna associated with litter breakdown in this first order tropical stream. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Decomposition of Juglans regia leaves was studied in fine and coarse mesh bags in a permanent mountain stream in Oman. A rapid initial mass loss, attributed to leaching, was followed by a more gradual decline. Daily exponential decay rates (k) calculated over 32 days were 0.011 (fine mesh litter bags) and 0.014 (coarse mesh litter bags). The difference between bag types was not significant, suggesting limited impact of leaf‐shredding invertebrates. Ergosterol levels on leaves from fine mesh bags peaked at 0.3 mg g1 AFDM after 16 days of stream exposure. During the experimental period, which followed the annual leaf fall, the concentration of aquatic hyphomycete conidia in the stream varied between 82 and 1362 l–1. Based on the morphology of conidia found in the water column or released from leaves, we identified 14 species of aquatic hyphomycetes. Tetracladium apiense was the most common taxon (62.2% of conidia in water column during the field experiment). Three other Tetracladium species contributed another 8%. Plating out leaf particles yielded common epiphytic taxa such as Alternaria sp., Aureobasidium pullulans and Phoma sp. The measured metrics of leaf decay in this desert stream fall within the range of values observed in temperate and tropical streams, with clear evidence for an early leaching phase, and no evidence of a strong impact of leaf shredders. The community of aquatic hyphomycetes appears impoverished. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
 以西双版纳热带湿性季节沟谷雨林混合凋落叶作为分解基质,在不同位置季节雨林样地,采用不同网孔( 2和0.15 mm)分解袋,开展大中型土壤动物对雨林凋落叶分解影响的实验,测定了不同网孔分解袋土壤动 物多样性、凋落叶分解速率和主要养分元素释放状况。结果显示:2 mm网孔分解袋土壤动物类群相对密度 年均值为2.67~2.83目•g-1凋落物干重,个体相对密度年均值为22.3~21.77个•g-1凋落物干重,显著 高于0.15 mm网孔分解袋的类群相对密度0.27~0.28目•g-1凋落物干重和个体相对密度2.88~2.77个•g- 1凋落物干重(p<0.01),并且0.15 mm网孔分解袋中极少量的动物个体主要为小型类群弹尾目和蜱螨目( 原生动物、湿生土壤动物线虫不计),由此我们视2 mm网孔分解袋凋落叶分解由绝大多数土壤动物和其它 土壤生物共同作用,而0.15 mm网孔分解袋基本排除了大中型土壤动物对袋内凋落叶分解的影响。2 mm网 孔分解袋凋落叶物质失重率(71%左右)、分解率指数(1.88~2.44)和主要养分元素释放率明显高于 0.15 mm分解袋(34%~35%,0.48~0.58)。通过比较两种不同网孔分解袋凋落叶失重率和元素释放率的 差异,显示出季节雨林大中型土壤动物群落对凋落叶物质损失的贡献率为年均值46%左右,并使凋落叶C/N 和C/P明显降低,而对不同元素释放率的影响不同,其中对N、S和Ca元素释放率的影响较大,而对K素释放 的影响作用最小。相关分析显示,2 mm网孔分解袋内土壤动物群落类群和个体的相对密度与凋落叶物质残 留率有较好的负相关关系,而群落香农多样性指数与凋落叶分解率指数表现出一定的正相关关系。  相似文献   

12.
1. Although stream–catchment interactions have been analysed in some detail in temperate environments, little is known about the effects of land‐use changes in the tropics. Here, we analyse differences in benthic communities (macroinvertebrates and fungi) under two contrasting land uses (mature secondary forest and pasture) in montane streams in north‐western Ecuador and their influence on the rates of litter processing. 2. Between 2005 and 2006, we used a combination of coarse and fine mesh bags to study the relative contribution of macroinvertebrates and fungi to processing of two types of litter, Alnus acuminata and Inga spectabilis, in three‐first‐order streams running through mature secondary montane forests and adjacent downstream reaches running through pastures. At the same time, we characterised the assemblages of shreddering macroinvertebrates and fungi communities and the litter processing rates in stream reaches under both vegetation types. 3. Litter processing rates attributable to invertebrate feeding (coarse mesh bags) were significantly slower in streams running through pastures. Nevertheless, shredder diversity and richness were similar between pasture and forest sections, while shredder abundance was significantly higher in forest streams (mainly Phylloicus sp. :Trichoptera). Fungal reproductive activity and litter processing rates were low (fine mesh bags) and did not differ significantly between pasture and forest stream reaches. 4. Phylloicus sp. abundance was the best predictor of the percentage of litter remaining in coarse mesh bags across pasture and forest sites. Neither shredder diversity nor their species richness was a significant predictor of mass loss, as most of the decomposition was performed by a single keystone species. Although litter decomposition by microbial decomposers was low, fungal biomass (but not diversity) was the best variable explaining the percentage of litter remaining in fine mesh bags. 5. Our data suggest that, in these Neotropical montane streams, land use can have a significant impact on the rates of critical ecosystem processes, such as litter decomposition. In this study, this effect was not mediated by a major shift in the structure of the benthos, but by a decrease in the abundance and relative representation of a single species whose life history makes it critical to litter processing. 6. This study highlights the significant role that macroinvertebrate fauna can have in the processing of litter in Neotropical streams and the predominant role that single species can have in terms of controlling stream ecosystem‐level processes. Understanding the extent to which these patterns affect the long‐term and large‐scale functioning of stream ecosystems still needs further research and will become increasingly important in terms of managing lotic ecosystems in the context of rapid land‐use change.  相似文献   

13.
宁夏荒漠草原柠条锦鸡儿枯落物分解特征及其影响因素   总被引:2,自引:0,他引:2  
以宁夏荒漠草原柠条锦鸡儿(Caragana kornshinskii)枯落物为研究对象,利用网孔分解袋法研究了极小型、小型、中型和大型柠条锦鸡儿灌丛微生境枯落物分解率变化特征及对土壤环境的响应规律。结果表明:(1)随着分解时间延长,不同大小柠条锦鸡儿灌丛微生境土壤含水量和土壤温度均呈现出相似的分布特征,而土壤pH值和电导率随时间分布特征则受到灌丛大小的显著影响。(2)3种网孔内,不同大小柠条灌丛微生境间枯落物分解率均无显著差异性。但是,灌丛微生境中枯落物分解率受到灌丛大小和网孔大小的共同影响。(3)中型灌丛微生境中枯落物分解率在3种网孔间均无显著差异性。但在极小型灌丛微生境中,120 d时枯落物分解率表现为4 mm(40.95%)0.01 mm(38.51%)2 mm(32.14%),150 d时枯落物分解率表现为2 mm(37.64%)4 mm(35.20%)0.01 mm(26.68%)。在小型灌丛微生境中,120 d时枯落物分解率表现为0.01 mm(46.81%)4 mm(41.07%)2 mm(34.75%)。在大型灌丛微生境中,120 d时枯落物分解率表现为4 mm(39.65%)2 mm(36.65%)0.01 mm(35.96%),210 d时枯落物分解率表现为2 mm(48.05%)4 mm(35.96%)0.01 mm(30.80%)。(4)Olson衰减指数模型得出枯落物分解50%和95%所需时间,表现为极小型灌丛和中型灌丛微生境中均为0.95年和4.1年(3种网孔相同);小型灌丛微生境中为0.63年和2.74年(4 mm)、1.90年和8.21年(2 mm)、0.95年和4.1年(0.01 mm);大型灌丛微生境中为0.95年和4.1年(4 mm)、0.63年和2.74年(2 mm)、1.90年和8.21年(0.01 mm)。研究表明,在宁夏荒漠草原,仅灌丛大小引起的微生境差异对枯落物分解率影响较小,但灌丛大小和土壤动物类群的相互作用对枯落物分解率的影响较大。  相似文献   

14.
We used bedrock geology and prior water chemistry data to classify and choose 4 conduit and 4 diffuse flow springs in a karst region of southeast Minnesota. Decomposition processes and chemical/physical conditions were compared between spring classes during two seasons (May and September, 1987).Although large storms and conduit run-in events did not occur during our sampling, baseline water chemistry supported our a priori spring classification. Baseline nitrate and atrazine levels were significantly higher in conduit than in diffuse springs. During a minor run-in event, atrazine levels increased significantly to at least 1.2 µg L–1 in all conduit systems, but remained unchanged in diffuse systems.Decay rates of the two predominant litter sources in the springs (watercress [Nasturtium officinale R.Br.] in May and box elder [Acer negundo L.] in September) were used to assess differences in biological activity between the spring classes. During May, watercress decayed (1 mm coarse mesh bags) at approximately the same rate in conduit and diffuse systems, k = 0.094 and 0.099 respectively. This result was unexpected since shredder colonization was much greater on litter bags in diffuse systems. In September, boxelder decay rate was significantly higher in diffuse (k = 0.018) than in conduit (k = 0.013) springs; and decay rates seemed to reflect significantly higher shredder colonization on bags in diffuse systems. Microbial activity on watercress and boxelder litter, measured as electron transport system (ETS) activity, was seldom significantly different between spring classes. Also, both watercress and boxelder litter decay rates for fine mesh bags (240µm) were similar between conduit and diffuse springs, suggesting that microbial processing did not differ greatly between spring classes.In conduit springs, low shredder colonization was apparently the result of low benthic shredder densities. Shredders and other macroinvertebrates may be adversely affected by discharge fluctuations from conduit run-in events. We suspect that, during times of low flow, watercress standing stock was also an important influence on shredder abundance.  相似文献   

15.
The dynamics of Rhizophora mangle litter production and decomposition were studied in a tropical coastal lagoon on the Gulf of Mexico in Veracruz, Mexico over a year (October 2002–October 2003). This region is characterized by three seasons: northerly winds (called ‘nortes’), dry, and rainy. Annual litter production (1116 g m−2) followed a seasonal pattern with leaf litter as the main fraction (70%) with two peaks in the dry and one in the rainy season. Leaf decomposition was evaluated with two types of litter bag in each season: fine mesh (1×1 mm) and coarse mesh (3×7 mm). Decomposition data were adjusted to a single negative exponential model. The results indicated faster decomposition rates in the coarse litter bag and significant differences among seasons. However these differences occurred after the 60th day of decomposition, indicating that leaching and microbial action were responsible for more than 50% of mass loss. After this period, the effects of aquatic invertebrates were evident but depended on climatic conditions. In the rainy season, the gastropod Neritina reclivata was associated with increasing leaf decomposition rate. In the ‘nortes’ season, the effect of aquatic invertebrates was smaller, and there were no differences in the decay constants calculated for the two litter bag types. High litter production represents an important input of organic matter which, through decomposition, may represent an important source of C, N, and P in this aquatic system.  相似文献   

16.
Leaf breakdown of two riparian tree species, Cunonia capensis L. and Ilex mitis (L.) Radlk. was investigated in vitro at Window Stream, Table Mountain, using three different designs of litter bag. Breakdown of Cunonia and Ilex in coarse-mesh (5 mm) litter bags was very rapid (respectively 14.79 and 13.93% loss d–1), and was significantly greater than the loss of leaf material of 1% d–1 for both species from fine-mesh bags (180 µm). Differences recorded between fine-mesh and composite-mesh bags (180 µm mesh with 5 mm mesh top) represented macro-invertebrate ingestion, and at t = 28 d, amounted to 67.57% material loss in Cunonia and 62.58% in Ilex. The losses due to microbial activity and leaching, 31.28% in Cunonia and 29.17% in Ilex were not significantly different. Weight loss of Cunonia in coarse-mesh bags (14.79% loss d–1) and in composite-mesh bags (13.93% loss d–1) did not differ, but this was not the case for Ilex, where a significantly higher rate of loss in coarse-mesh bags (13.93% loss d–1) than in composite-mesh bags (7.69% loss d–1) was observed. This difference was used to quantify fragmentation losses. It was concluded that future leaf breakdown experiments in mountain streams must take cognisance of differential fragmentation losses before inferences can be made as to both invertebrate feeding preferences and biological decomposition of leaves.  相似文献   

17.
1. Low organic matter availability is thought to be a primary factor influencing evolutionary and ecological processes in cave ecosystems. We examined links among organic matter abundance, macroinvertebrate community structure and breakdown rates of red maple (Acer rubrum) and corn litter (Zea mays) in coarse‐ (10 × 8 mm) and fine‐mesh (500‐μm) litter bags over two seasonal periods in four cave streams in the south‐eastern U.S.A. 2. Organic matter abundance differed among cave streams, averaging from near zero to 850 g ash‐free dry mass m?2. Each cave system harboured a different macroinvertebrate community. However, trophic structure was similar among caves, with low shredder biomass (2–17% of total biomass). 3. Corn litter breakdown rates (mean k = 0.005 day?1) were faster than red maple (mean k = 0.003 day?1). Breakdown rates in coarse‐mesh bags (k = 0.001–0.012 day?1) were up to three times faster than in fine‐mesh bags (k = 0.001–0.004 day?1). Neither invertebrate biomass in litter bags nor breakdown rates were correlated with the ambient abundance of organic matter. Litter breakdown rates showed no significant temporal variation. Epigean (surface‐adapted) invertebrates dominated biomass in litter bags, suggesting that their effects on cave ecosystem processes may be greater than hypogean (cave‐adapted) taxa, the traditional focus of cave studies. 4. The functional diversity of our cave communities and litter breakdown rates are comparable to those found in previous litter breakdown studies in cave streams, suggesting that the factors that control organic matter processing (e.g. trophic structure of communities) may be broadly similar across geographically diverse areas.  相似文献   

18.
1. The exposure of mesh litter bags has been widely used to investigate the role of benthic macroinvertebrates in leaf processing in freshwaters. In this sense, several studies have related litter bag breakdown rates to the presence of colonizing invertebrates. A possible confounding factor in such experiments is that the litter bags trap suspended particulate organic matter that can itself attract invertebrate colonists, irrespective of the intended experimental treatment.
2. We attempted to quantify the accumulation of particulate organic matter (POM) within litter bags and to investigate its possible impact on macroinvertebrate density and richness. In seven headwater forested streams we exposed mesh bags filled either with beech leaves ( Fagus sylvatica ) or with plastic strips of an equal surface area.
3. Principal component analysis (PCA) showed that bag type and stream were the main explanatory variables for invertebrate colonization and POM accumulation within the bags. In contrast, there was little variation among sampling dates (6.4% of the total inertia).
4. The accumulated POM within the bags was substantial (up to 8.83 g ash-free dry mass (AFDM)) but highly variable among sites (mean from 0.32 to 4.58 g AFDM). At each of the seven sites, both richness and abundance of invertebrates were positively correlated with the mass of accumulated POM in bags. Macroinvertebrate colonization (notably taxon richness) was directly linked with the quantity of POM accumulated.
5. Our findings provide evidence of a potential pitfall in linking invertebrates to litter processing in mesh bags, particularly when large amounts of POM, entrained in stream flow, accumulate within the bags. An evaluation of the POM mass trapped in litter bags could account for the erratic patterns sometimes observed in their colonization by invertebrates.  相似文献   

19.
Leaf decomposition in an experimentally acidified stream channel   总被引:3,自引:2,他引:1  
Decomposition of Alnus rugosa and Myrica Gale leaves immersed in artificial stream channels fed by a small headwater creek was followed over a three month period. At the end of experiment, remaining weights of both leaf types confined in litter bags were significantly higher after immersion in experimentally acidified water (pH 4.0) than when immersed in control water (pH 6.2–7.0). For both types of leaves and for all sampling times, there was generally no difference in the C:N ratios between leaves in acidified and those in control water. In control water, oxygen uptake by microorganism on A. rugosa leaves was significantly higher after 46 days of immersion, whereas differences between treatments appeared only after 69 days for M. Gale leaves. Transfer of A. rugosa leaves from acid to control water led to a rapid increase in microbial activity; this increased activity was reflected in a fast weight loss of the leaves. For both leaf types, total numbers of macroinvertebrates were usually higher in litter bags immersed in control water. Macroinvertebrates colonizing the litter bags were mainly collector-gatherers: Chironomidae were numerically dominant in control leaf packs whereas Oligochaeta dominated in acid leaf packs. Macroinvertebrate biomass in M. Gale litter was higher in control than in acidified water, which contrasted with macroinvertebrate biomass in A. rugosa leaf packs which was not significantly different between treatments. Macroinvertebrate contribution to the breakdown of leaf litter was thus considered less important than the microbial contribution. This study demonstrated that decomposition of leaf litter in acidic headwater streams can be seriously reduced, mainly as a result of a lower microbial activity.  相似文献   

20.
Two studies were conducted to test the feasibility and efficacy of using physical barriers (Maggot Barrier® nylon mesh bags) for control of three internal pests of tree fruit (codling moth (Cydia pomonella L.), apple maggot (Rhagoletis pomonella (Walsh)) and peach twig borer (Anarsia lineatella Zeller)) and three groups of external direct pests (stink bugs (Pentatomidae), plant bugs (Miridae) and birds). Two types of Maggot Barrier® were tested (regular and heavy duty), and two methods of securing the bags: knotting the bag on itself (‘self‐ties’) and using plastic‐coated wire ‘twist‐ties’. Bags were applied to eight cultivars of both apples and peaches, selected to give a range of maturity dates. Apples were bagged when fruit was approximately 27 mm in diameter, and peaches when the fruit was approximately 36 mm in diameter. Unbagged fruits served as controls. On apples, bagging had no effect on damage due to birds, stink bugs or apple maggot (which was present only in very low numbers), but reduced codling moth damage by 20–25% compared with unbagged controls; there were no significant differences due to bag type or tie type. In apples, a significantly higher proportion of the heavy duty bags were reusable after harvest, but on peaches, which were bagged for a shorter time, there was no difference between bag types in this respect. Bagging significantly reduced the percentage of peach fruits damaged by twig borer, birds and stink bugs, but increased the percentage of fruit with skin marks; there were no significant differences between bag or tie types. In peaches, there were significant effects on the time taken to apply bags due to both tying method and differences between individual operators. Cultivar affected pest‐related damage in both fruit types, underlining the importance of appropriate cultivar choice in pest management, particularly for organic growers and home gardeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号