首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
To gain insight into the mechanism by which angiotensin II type 2 receptor (AT(2)) regulates carcinogen-induced lung tumorigenesis, we have newly developed anti-AT(2) single chain variable fragment (ScFv) antibodies using a rodent phage-displayed recombinant antibody library with various peptide fragments of the receptor protein, and investigated the expression of the AT(2) receptor protein. The specificity of the antibodies was verified using AT(2) over-expressing COS-7 cells and AT(2) naturally expressing PC12W cells. In control wild type mouse lung, a stronger immunoreactivity was observed in bronchial epithelial cells. A moderate immunoreactivity was detected in pulmonary vascular walls and vascular endothelial cells. In the lungs possessing tobacco-specific nitrosamine (NNK)-induced tumors, significantly increased AT(2) and AT(1 )immunostaining was observed in adenomatous lesions. These data suggest that the increase in both receptors' expression in the alveolar epithelial cells may be accompanied with the onset of NNK-induced tumorigenesis and hence play important roles in lung tumorigenesis.  相似文献   

2.
Enterovirus 71 (EV71) infection causes hand-foot-and-mouth disease (HFMD) in children and might be accompanied by severe neurological complications. It has become one of the most important pathogens of central nervous system infection. To explore the causes of lung injury by EV71, the distribution of EV71 receptors, SCARB2 and PSGL-1, in human lung tissues was examined. Our results revealed that SCARB2 was positively distributed in the bronchial and bronchiolar epithelial cells, alveolar cells and macrophages, while PSGL-1 was positively scattered in bronchial and bronchiolar epithelial cells and macrophages, and negatively distributed in alveolar cells. The pathological changes of fatal lung with EV71 infection demonstrated intrapulmonary bronchitis and bronchiolitis, diffuse or focal infiltration of inflammatory cells, such as T cells and B cells in the wall and surrounding tissues, widened alveolar septum, capillaries in the septum with highly dilated and congested, and infiltrated inflammatory cells, showing different degrees of protein edema with fibrin exudation in the alveolar cavity, as well as obvious hyaline membrane formation in some alveolar cavities. The EV71 antigen in lung tissues was detected, and the viral antigen was positive in lung bronchial and bronchiolar epithelial cells, and positively scattered in the alveolar cells and macrophages. Therefore, in addition to the complications of central nervous system injury, the lung remains the main target organ for virus attack in severe EV71 infected patients. Lung injury was mainly caused by neurogenic damage and/or direct invasion of the virus into the lungs in critically serious children, and the lesions were mainly pulmonary edema and interstitial pneumonia.  相似文献   

3.
Clearance of apoptotic neutrophils by alveolar macrophages plays an important role in the resolution phase of lung inflammation. If not cleared, apoptotic neutrophils are postulated to release histotoxic granular contents. Since numerous cellular proteins are degraded during apoptosis, we sought to determine whether functional serine proteinases are indeed released by apoptosing neutrophils in vitro. In a coculture system, cytokine-activated neutrophils induced detachment in the human epithelial cell line, A549. This process was CD18- and serine proteinase-dependent. Early apoptotic neutrophils induced significant detachment, but live, senescent, resting neutrophils and terminal, secondary necrotic neutrophils had a different effect. This detachment process was CD18-independent but serine proteinase-dependent. Similarly, detachment occurred with primary human small airway epithelial cells. Notably, epithelial cell detachment correlated with the transition of early apoptotic neutrophils to secondary necrosis and with the accumulation of elastase in the supernatant. The membrane integrity of lung epithelial cells was damaged in advance of significant cell detachment. These observations suggest that not only live activated neutrophils but also apoptosing neutrophils can reveal functional elastase activities. Furthermore, the rapidity of the transition emphasizes the importance of the prompt clearance of apoptotic neutrophils before they progress to secondary necrosis at the site of lung inflammation.C.Y.L. and Y.H.L contributed equally to the work on this project as first authors.  相似文献   

4.
5.
Human bronchial epithelial cells secrete cytokines that play a role in immune responses in the lung. However, the roles of these cytokines in regulating epithelial repair following acute lung injury are largely unknown. Responses to injury include hyperplasia of epithelial cells and squamous metaplasia. The resolution stage is characterized by discontinuation of hyperplasia. Apoptosis is considered to be the most efficient mechanism of removal of unwanted cells without causing inflammation. The presence of TGF-beta1 increases apoptosis, induces squamous metaplasia and inhibits proliferation of airway epithelial cells. Interleukin-4 increases the ability of macrophages to phagocytose epithelial cells and produce inflammatory cytokines. The purpose of this study was to investigate the hypothesis that apoptotic lung epithelial cells produce cytokines, which could act in an autocrine manner to control hyperplasia and induce squamous differentiation following acute lung injury. A bronchial epithelial cell line (16 HBE) was used as an in vitro model, to study the production of TGF-beta, IL-4 and IL-6 by lung epithelial cells undergoing apoptosis. Apoptotic and live cells were sorted on the basis of bright and negative staining with FITC-conjugated Annexin V, respectively. Intracellular IL-6, TGF-beta and IL-4 was measured using flow cytometric techniques. Electron microscopy, immunohistochemistry and ELISA were used as supportive techniques. Apoptotic cells produced significantly more TGF-beta and IL-4 (but less IL-6) than viable cells. Increased production of TGF-beta and IL-4 by epithelial cells undergoing apoptosis may contribute to the inhibition of proliferation, squamous metaplasia, and reduction of the inflammatory response in acute lung injury.  相似文献   

6.
To research the impact of autophagy on alveolar epithelial cell inflammation and its possible mechanism in the early stages of hypoxia, we established a cell hypoxia–reoxygenation model and orthotopic left lung ischemia–reperfusion model. Rat alveolar epithelial cells stably expressing GFP-LC3 were treated with an autophagy inhibitor (3-MA) or an autophagy promoter (rapamycin), followed by hypoxia–reoxygenation treatment for 2, 4, and 6 hr in vitro. In vivo, 20 male Sprague Dawley rats were randomly divided into four groups (model group: No blocking of the hilum in the left lung; control group: Blocking of the hilum in the left lung for 1 hr with dimethyl sulfoxide lavage; 3-MA group: Blocking of the hilum in the left lung for 1 hr with 100 ml/kg of 3-MA (5 μmol/L) solution lavage; and rapamycin group: Blocking of the hilum in the left lung for 1 hr with 100 ml/kg of rapamycin (250 nmol/L) solution lavage) to establish an orthotopic left lung ischemia model. This study demonstrated that rapamycin significantly suppressed the nuclear factor kappa B signaling pathway and limited the expression of proinflammatory factors. A contrary result was found after the 3-MA pretreatment. These findings indicate that autophagy reduces ischemia–reperfusion injury by repressing inflammatory signaling pathways in the early stages of hypoxia in vitro and in vivo. Autophagy could be a new protective method for application in lung ischemia–reperfusion injury.  相似文献   

7.
Brevinin-2R is an antimicrobial peptide which has been isolated from the skin of the frog Rana ridibunda. The purpose of the present study was to examine the cellular cytotoxicity and inflammatory effects of brevinin-2R (B2R) on human lung epithelial adenocarcinoma cell line A549. The effects of different concentrations (5, 10, and 20 μg/ml) of B2R on the expression levels of pro-inflammatory cytokines such as IL-1β, and IL-8 in A549 cells were evaluated by semi-quantitative RT-PCR and real-time PCR assays in a dose- and time-dependent manner. Based on the results of MTT assay, B2R showed a moderate cytotoxicity effect in a dose-dependent manner up to 20 % suppression of the cell growth. Moreover, gene expression results demonstrated that B2R up-regulates the IL-1β and IL-8 expression levels in A549 cells in a dose- and time-dependent manner. Our results suggested that brevinin-2R antimicrobial peptide has potentially a regulatory effect on triggering the inflammatory processes.  相似文献   

8.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell growth and permeability factor highly expressed in rodent alveolar epithelium after injury and repair. To investigate VEGF synthesis in human lung epithelial cells, we examined VEGF expression by cultured cells under basal conditions and after cytokine treatment or oxidative stress. Basal VEGF expression was detected in transformed human epithelial cell lines (A549 and 1HAEo-) and in primary human bronchial epithelial cells with RT-PCR, Western blot, and immunocytochemistry. Among the cytokines tested, only transforming growth factor-beta1 increased the levels of excreted VEGF(165) as measured by ELISA. Under hypoxia (0% O(2) for 24 h), the VEGF(165) level increased fivefold, and this effect was O(2) concentration dependent. VEGF concentrations in the medium of all the cell types studied reached values similar to those found in bronchoalveolar lavage fluids from normal patients. Endothelial cells (human umbilical vein endothelial cells) exposed to conditioned medium from primary bronchial epithelial cell cultures showed an increased growth rate, which was inhibited in the presence of a specific neutralizing antibody to VEGF. These results suggest that lung epithelial cells participate in the endothelial repair and angiogenesis that follow lung injury through the synthesis of VEGF.  相似文献   

9.
Interleukin-5 (IL-5) plays a key role in the pathogenesis of bronchial asthma. Thrombin is a procoagulant factor that has been also reported to participate in the inflammatory response by stimulating the secretion of cytokines. Interaction of inflammatory cells with airway epithelial cells may also promote the secretion of cytokines. However, the role of thrombin and cell-to-cell interaction in pathogenesis of allergic inflammation is unclear. In this study, we evaluated the role of thrombin and cell-to-cell interaction in the secretion of IL-5 from basophils. The human basophil cell line KU-812 was used in the assays. Thrombin and co-culture with alveolar epithelial cells significantly stimulated the secretion of IL-5 from KU-812 cells as compared to controls. Secretion of IL-5 was synergistically stimulated when KU-812 cells were incubated in the presence of both thrombin and alveolar epithelial cells. Co-culture of KU-812 cells with epithelial cells significantly increased the expression of tissue factor, an activator of coagulation activation, in a cell dose-dependent manner. Secretion of IL-5 from KU-812 basophils co-cultured with epithelial cells was significantly inhibited by LY294002, an inhibitor of phosphatidylinositol 3-kinase. These results suggest that thrombin and cell interaction with lung epithelial cells may augment the inflammatory response in allergic diseases by stimulating the secretion of IL-5 from basophils.  相似文献   

10.
癌前改变是肿瘤演变过程中的关键阶段。许多研究显示维甲类化合物对动物肿瘤及体外恶性细胞系具有抑制作用,但尚未见其对肺癌前病变作用的实验室研究报道。人类肺癌的绝大部分起源于支气管上皮,为研究维胺酸对体外转化人支气管上皮M细胞系以及在大鼠气管构建后移植到裸鼠体内生长的具有癌前病变特点的人支气管上皮组织的抑制作用,采用上皮细胞无血清培养技术,人支气管上皮组织大鼠气管内构建/裸鼠皮下移植生长技术,流式细胞学分析,免疫组化、凋亡细胞原位末端标记以及病理学检查等研究方法发现,维胺酸可抑制体外培养的转化人支气管上皮细胞的增殖,使S期细胞比例下降,以及细胞增殖标志Ki-67、mpm-2阳性反应细胞比例下降;明显诱导细胞凋亡。裸鼠腹腔注射给予维胺酸也可使大鼠气管内构建后移植到裸鼠体内生长的癌前期人支气管上皮组织的生长率明显降低,病变程度明显减轻;同样可以诱导细胞凋亡。研究结果提示,维胺酸对体外培养的转化人支气管上皮细胞系及大鼠气管构建/裸鼠体内移植生长的人支气管上皮组织均有明显的抑制作用,是有希望的肺癌化学预防药物。  相似文献   

11.
Tumor necrosis factor (TNF) has been implicated in several infectious and inflammatory lung diseases. Two closely related variants, TNFalpha and TNFbeta, elicit various cellular responses via two distinct TNF receptors, the 55-kDa TNF-R1 and the 75-kDa TNF-R2. Recently, a TNFalpha-converting enzyme (TACE) was described, which cleaves and releases the membrane-bound TNFalpha. In the present study in normal rat and human lung tissue, the constitutive expression of TNFalpha/beta, TACE and TNF-R1/R2 was investigated by immunohistochemical techniques. In addition, TNFalpha and TNFbeta mRNA were localized by in situ hybridization. Both TNFalpha and TNFbeta were detected in various lung cell types. Expression of TNFalpha was particularly prominent in bronchial epithelial cells and vascular smooth muscle cells, next to alveolar macrophages. Both in situ hybridization for TNFalpha message and TACE immunostaining matched this expression profile. TNFbeta-so far only known to be produced by lymphocytes-was demonstrated in alveolar macrophages, bronchial epithelial cells, vascular smooth muscle cells and endothelial cells at the protein and the message level. Both TNF receptors were detected, with TNF-R1 being prominent on bronchial epithelial cells and endothelial cells, and TNF-R2 being expressed by nearly all cell types. Following LPS stimulation in isolated rat lungs TNFalpha/beta signal intensity was largely reduced due to liberation of stored TNFalpha/beta, while TACE immunoreactivity remained unchanged or was enhanced, demonstrating increased TNF generation.We conclude that both TNFalpha and TNFbeta are constitutively expressed by several non-leukocytic cell types in the human and rat lung. In concert with the expression of TACE and the TNF receptors R1 and R2, this finding suggests in addition to the known role of the TNF system in inflammation physiological functions of the TNF system in different compartments of the adult lung, with the vasculature and the bronchial tissue being of particular interest in addition to the leukocyte/macrophage populations.  相似文献   

12.
We examined the effect of grepafloxacin (GPFX), a new fluoroquinolone antimicrobial agent, on interleukin-8 (IL-8) expression in tumor necrosis factor-alpha (TNF-alpha)-stimulated human airway epithelial cells (AEC). GPFX inhibited IL-8 protein production as well as mRNA expression in a concentration-dependent manner (2.5 - 25 micro g/ml), but the inhibition of IL-8 expression by corresponding concentrations of GPFX to serum and airway lining fluids was not complete. We discuss the modulatory effect of GPFX on IL-8 production in the context of its efficacy on controlling chronic airway inflammatory diseases.  相似文献   

13.
Since April 2012, there have been 17 laboratory-confirmed human cases of respiratory disease associated with newly recognized human betacoronavirus lineage C virus EMC (HCoV-EMC), and 7 of them were fatal. The transmissibility and pathogenesis of HCoV-EMC remain poorly understood, and elucidating its cellular tropism in human respiratory tissues will provide mechanistic insights into the key cellular targets for virus propagation and spread. We utilized ex vivo cultures of human bronchial and lung tissue specimens to investigate the tissue tropism and virus replication kinetics following experimental infection with HCoV-EMC compared with those following infection with human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus (SARS-CoV). The innate immune responses elicited by HCoV-EMC were also investigated. HCoV-EMC productively replicated in human bronchial and lung ex vivo organ cultures. While SARS-CoV productively replicated in lung tissue, replication in human bronchial tissue was limited. Immunohistochemistry revealed that HCoV-EMC infected nonciliated bronchial epithelium, bronchiolar epithelial cells, alveolar epithelial cells, and endothelial cells. Transmission electron microscopy showed virions within the cytoplasm of bronchial epithelial cells and budding virions from alveolar epithelial cells (type II). In contrast, there was minimal HCoV-229E infection in these tissues. HCoV-EMC failed to elicit strong type I or III interferon (IFN) or proinflammatory innate immune responses in ex vivo respiratory tissue cultures. Treatment of human lung tissue ex vivo organ cultures with type I IFNs (alpha and beta IFNs) at 1 h postinfection reduced the replication of HCoV-EMC, suggesting a potential therapeutic use of IFNs for treatment of human infection.  相似文献   

14.
Adsorbed to a variety of particles, iron may be carried to the lungs by inhalation thereby contributing to a number of inflammatory lung disorders. Redox-active iron is a potent catalyst of oxidative processes, but intracellularly it is bound primarily to ferritin in a non-reactive form and probably is catalytically active largely within the lysosomal compartment. Damage to the membranes of these organelles causes the release to the cytosol of a host of powerful hydrolytic enzymes, inducing apoptotic or necrotic cell death. The results of this study, using cultured BEAS-2B cells, which are adenovirus transformed human bronchial epithelial cells, and A549 cells, which have characteristics similar to type II alveolar epithelial cells, suggest that the varying abilities of different types of lung cells to resist oxidative stress may be due to differences in intralysosomal iron chelation. Cellular ferritin and iron were assayed by ELISA and atomic absorption, while plasma and lysosomal membrane stability were evaluated by the acridine orange uptake and trypan blue dye exclusion tests, respectively. Normally, and also after exposure to an iron complex, A549 cells contained significantly more ferritin (2.26 +/- 0.60 versus 0.63 +/- 0.33 ng/microg protein, P <0.001) and less iron (0.96 +/- 0.14 versus 1.48 +/- 0.21 ng/microg protein, P <0.05) than did BEAS-2B cells. Probably as a consequence, iron-exposed A549 cells displayed more stable lysosomes (P <0.05) and better survival (P <0.05) following oxidative stress. Following starvation-induced autophagocytosis, which also enhances resistance to oxidant stress, the A549 cells showed a significant reduction in ferritin, and the BEAS-2B cells did not. These results suggest that intralysosomal ferritin enhances lysosomal stability by iron-chelation, preventing Fenton-type chemistry. This notion was further supported by the finding that endocytosis of apoferritin, added to the medium, stabilized lysosomes (P <0.001 versus P <0.01) and increased survival (P <0.01 versus P <0.05) of iron-loaded A549 and BEAS-2B cells. Assuming that primary cell lines of the alveolar and bronchial epithelium behave in a similar manner as these respiratory cell lines, intrabronchial instillation of apoferritin-containing liposomes may in the future be a treatment for iron-dependent airway inflammatory processes.  相似文献   

15.
Nitrotyrosine (NO(2)Tyr) formation is a hallmark of acute and chronic inflammation and has been detected in a wide variety of human pathologies. However, the mechanisms responsible for this posttranslational protein modification remain elusive. While NO(2)Tyr has been considered a marker of peroxynitrite (ONOO(-)) formation previously, there is growing evidence that heme-protein peroxidase activity, in particular neutrophil-derived myeloperoxidase (MPO), significantly contributes to NO(2)Tyr formation in vivo via the oxidation of nitrite (NO(2)(-)) to nitrogen dioxide (.NO(2)). Coronary arteries from a patient with coronary artery disease, liver and lung tissues from a sickle cell disease patient, and an open lung biopsy from a lung transplant patient undergoing rejection were analyzed immunohistochemically to map relative tissue distributions of MPO and NO(2)Tyr. MPO immunodistribution was concentrated along the subendothelium in coronary tissue and hepatic veins as well as in the alveolar epithelial compartment of lung tissue from patients with sickle cell disease or acute rejection. MPO immunoreactivity strongly colocalized with NO(2)Tyr formation, which was similarly distributed in the subendothelial and epithelial regions of these tissues. The extracellular matrix protein fibronectin (FN), previously identified as a primary site of MPO association in vascular inflammatory reactions, proved to be a major target protein for tyrosine nitration, with a strong colocalization of MPO, NO(2)Tyr, and tissue FN occurring. Finally, lung tissue from MPO(-/-) mice, having tissue inflammatory responses stimulated by intraperitoneal zymosan administration, revealed less subendothelial NO(2)Tyr immunoreactivity than tissue from wild-type mice, confirming the significant role that MPO plays in catalyzing tissue nitration reactions. These observations reveal that (i) sequestration of neutrophil-derived MPO in vascular endothelial and alveolar epithelial compartments is an important aspect of MPO distribution and action in vivo, (ii) MPO-catalyzed NO(2)Tyr formation occurs in diverse vascular and pulmonary inflammatory pathologies, and (iii) extracellular matrix FN is an important target of tyrosine nitration in these inflammatory processes.  相似文献   

16.
17.
Hepatocarcinoma‐intestine‐pancreas/pancreatitis‐associated protein (HIP/PAP), a C‐type lectin, exerts anti‐oxidative, anti‐inflammatory, bactericidal, anti‐apoptotic, and mitogenic functions in several cell types and tissues. In this study, we explored the role of HIP/PAP in pulmonary fibrosis (PF). Expression of HIP/PAP and its murine counterpart, Reg3B, was markedly increased in fibrotic human and mouse lung tissues. Adenovirus‐mediated HIP/PAP expression markedly alleviated bleomycin (BLM)‐induced lung injury, inflammation, and fibrosis in mice. Adenovirus‐mediated HIP/PAP expression alleviated oxidative injury and lessened the decrease in pulmonary superoxide dismutase (SOD) activity in BLM‐treated mice, increased pulmonary SOD expression in normal mice, and HIP/PAP upregulated SOD expression in cultured human alveolar epithelial cells (A549) and human lung fibroblasts (HLF‐1). Moreover, in vitro experiments showed that HIP/PAP suppressed the growth of HLF‐1 and ameliorated the H2O2‐induced apoptosis of human alveolar epithelial cells (A549 and HPAEpiC) and human pulmonary microvascular endothelial cells (HPMVEC). In HLF‐1, A549, HPAEpiC, and HPMVEC cells, HIP/PAP did not affect the basal levels, but alleviated the TGF‐β1‐induced down‐regulation of the epithelial/endothelial markers E‐cadherin and vE‐cadherin and the over‐expression of mesenchymal markers, such as α‐SMA and vimentin. In conclusion, HIP/PAP was found to serve as a potent protective factor in lung injury, inflammation, and fibrosis by attenuating oxidative injury, promoting the regeneration of alveolar epithelial cells, and antagonizing the pro‐fibrotic actions of the TGF‐β1/Smad signaling pathway.  相似文献   

18.
19.
A decreased clearance of apoptotic cells (efferocytosis) by alveolar macrophages (AM) may contribute to inflammation in emphysema. The up-regulation of ceramides in response to cigarette smoking (CS) has been linked to AM accumulation and increased detection of apoptotic alveolar epithelial and endothelial cells in lung parenchyma. We hypothesized that ceramides inhibit the AM phagocytosis of apoptotic cells. Release of endogenous ceramides via sphingomyelinase or exogenous ceramide treatments dose-dependently impaired apoptotic Jurkat cell phagocytosis by primary rat or human AM, irrespective of the molecular species of ceramide. Similarly, in vivo augmentation of lung ceramides via intratracheal instillation in rats significantly decreased the engulfment of instilled target apoptotic thymocytes by resident AM. The mechanism of ceramide-induced efferocytosis impairment was dependent on generation of sphingosine via ceramidase. Sphingosine treatment recapitulated the effects of ceramide, dose-dependently inhibiting apoptotic cell clearance. The effect of ceramide on efferocytosis was associated with decreased membrane ruffle formation and attenuated Rac1 plasma membrane recruitment. Constitutively active Rac1 overexpression rescued AM efferocytosis against the effects of ceramide. CS exposure significantly increased AM ceramides and recapitulated the effect of ceramides on Rac1 membrane recruitment in a sphingosine-dependent manner. Importantly, CS profoundly inhibited AM efferocytosis via ceramide-dependent sphingosine production. These results suggest that excessive lung ceramides may amplify lung injury in emphysema by causing both apoptosis of structural cells and inhibition of their clearance by AM.  相似文献   

20.
Granzyme A (GrA) is a lymphocyte serine protease that is believed to enter virus-infected cells and growing tumors and induce apoptosis. We found recently that recombinant rat GrA (rGrA) promotes detachment of and interleukin (IL)-8 release from alveolar epithelial A549 cells and suggested that this protease is involved in the pathogenesis of certain inflammatory lung diseases. In the present study, we found that λ-carrageenan (a sulfated oligosaccharide constituting the cell walls of seaweeds) potently inhibits rGrA-induced detachment and IL-8 release of A549 cells. This sulfated oligosaccharide might be useful for suppressing the development of inflammatory lung diseases in which GrA is thought to be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号