首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H+-dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of d- and l-[U-14C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-d-glucose/d-[U-14C]glucose and 3-O-methyl-d-glucose/3-O-methyl-d-[U-14C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH4Cl inhibited neither the linear component of d- and l-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-d-[U-14C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol− 1, respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol− 1). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

2.
3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells   总被引:1,自引:0,他引:1  
The characteristics and regulatory nature of sugar transport in freshly isolated bovine adrenal chromaffin cells were investigated. Transport was measured by following the cell/medium distribution of non-metabolizable glucose analogue, 3-O-methyl-D-glucose. The uptake of 3-O-methyl-D-glucose was was mediated by a saturable transport system with a Km of 8.2 mM and a Vmax of 0.69 nmol/mg protein per min. Basal 3-O-methyl-D-glucose transport was competitively inhibited by D-glucose and a countertransport effect was demonstrated. Cytochalasin B and phloretin, which are specific inhibitors of carrier-mediated glucose transport, significantly decreased basal 3-O-methyl-D-glucose uptake. Basal transport was stimulated by 50 mU/ml insulin, an effect associated with an increase in Vmax. The stimulatory effect of insulin was depressed in medium lacking external Ca2+, or containing the Ca2+-antagonistic ion, La3+, or the Ca2+ channel blocker, methoxyverapamil (D-600). The data suggest that the uptake of 3-O-methyl-D-glucose in freshly isolated bovine adrenal chromaffin cells is mediated by a specific facilitated diffusion mechanism, and is subject to regulation by insulin, thus resembling sugar transport in muscle. In addition, the insulin effect appears to depend on the presence of extracellular Ca2+.  相似文献   

3.
Utilization and transport of glucose in Olea Europaea cell suspensions   总被引:1,自引:0,他引:1  
Cell suspensions of Olea europaea var. Galega Vulgar grown in batch culture with 0.5% (w/v) glucose were able to transport D-[(14)C]glucose according to Michaelis-Menten kinetics associated with a first-order kinetics. The monosaccharide carrier exhibited high affinity (K(m) approximately 50 micro M) and was able to transport D-glucose, D-fructose, D-galactose, D-xylose, 2-deoxy-D-glucose and 3-O-methyl-D-glucose, but not D-arabinose, D-mannitol or L-glucose. D-[(14)C]glucose uptake was associated with proton uptake, which also followed Michaelis-Menten kinetics. The transport of 3-O-methyl-D-glucose was accumulative (40-fold, at pH 5.0) and the protonophore carbonyl cyanide m-chlorophenylhydrazone strongly inhibited sugar accumulation. The results were consistent with the involvement of a monosaccharide: proton symporter with a stoichiometry of 1 : 1. When cells were grown with 3% (w/v) glucose, the uptake of D-[(14)C]glucose followed first-order kinetics and monosaccharide:proton symporter activity was not detected. The value obtained for the permeability coefficient of hexoses in O. europaea cells supported the hypothesis that the first-order kinetics observed in 0.5% and 3% sugar-grown cells was produced exclusively by passive diffusion of the sugar. The results indicate that in O. europaea cells sugar levels have a regulatory effect on sugar transport, because the activity for monosaccharide transport was repressed by high sugar concentrations.  相似文献   

4.
Cytochalasin B (17-3 microM) virtually abolished 3-O-methyl-D-[U-14C]glucose uptake and D-[5-3H]glucose utilization in tumoral insulin-producing cells of the RINm5F line. This coincided with a marked decrease in D-[U-14C]glucose oxidation and suppression of the stimulant action of D-glucose upon insulin release. Cytochalasin B, however, augmented basal insulin release by the tumoral cells. The RINm5F cells appeared much more sensitive than normal islet cells to cytochalasin B, as judged by the relative magnitude of inhibition in either hexose uptake or utilization. In both cell types, the inhibitory action of cytochalasin B upon glucose metabolism seemed to be competitive, being more marked at low than high glucose concentration. These results are interpreted in support of the view that a decreased efficiency of hexose transport across the plasma membrane represents an essential deficiency of the RINm5F cells.  相似文献   

5.
In order to assess the respective contribution of the exocrine and endocrine moieties of the pancreas to the overall net uptake of selected monosaccharides by the pancreatic gland, the apparent distribution space of L-[1-14C]glucose, 3-O-[14C-methyl]-D-glucose, D-[U-14C]glucose, D-[U-14C]mannose and D-[U-14C]fructose was measured in pieces of pancreas obtained from either control rats or animals injected with streptozotocin. Although the time course for the uptake of 3-O-[14C-methyl]-D-glucose, D-[U-14C]glucose, D-[U-14C]mannose and D-[U-14C]fructose was much slower in the pieces of pancreas than that previously documented in isolated pancreatic islets, no significant difference could, as a rule, be detected between the results obtained in pancreatic pieces of control and streptozotocin rats. A comparable situation prevailed in the pancreas of animals examined 3 min after the intravenous injection of 3-O-[14C-methyl]-D-glucose. D-Glucose inhibited the uptake of 3-O-[14C-methyl]-D-glucose and that of D-[U-14C]fructose. Likewise, 3-O-methyl-D-glucose inhibited the uptake of D-[U-14C]glucose. Cytochalasin B (20 microm) also inhibited the uptake of 3-O-[14C-methyl]-D-glucose and D-[U-14C]glucose, but not that of D-[U-14C]fructose. D-Mannoheptulose hexaacetate, but not the unesterified heptose, inhibited the metabolism of tritiated and 14C-labelled D-glucose, as well as the net uptake of D-[U-14C]glucose and D-[U-14C]mannose and, to a lesser extent, that of D-[U-14C]fructose. These findings indicate that despite marked differences between endocrine and exocrine pancreatic cells in terms of both the time course for the uptake of several hexoses and the inhibition of their phosphorylation by D-mannoheptulose, little or no preferential labelling of the endocrine moiety of the pancreas by the 14C-labelled hexoses is observed, at least when judged from their distribution space in pancreatic pieces or the whole pancreatic gland. Nevertheless, the findings made with D-mannoheptulose and its hexaacetate ester raise the view that this heptose could conceivably be used to achieve a sizeable preferential labelling of the endocrine pancreas under the present experimental conditions.  相似文献   

6.
Facilitated Transport of Glucose from Blood into Peripheral Nerve   总被引:1,自引:1,他引:0  
D-Glucose is the major substrate for energy metabolism in peripheral nerve. The mechanism of transfer of glucose across the blood-nerve barrier is unclarified. In this study an in situ perfusion technique was utilized, in anesthetized rats, to examine monosaccharide transport from blood into peripheral nerve. Unidirectional influxes of D-[14C]glucose, L-[14C]glucose, and [14C]3-O-methyl-D-glucose across capillaries of the tibial nerve were measured at different perfusate concentrations of unlabelled D-glucose. The permeability-surface area product (PA) for D-[14C]glucose and [14C]3-O-methyl-D-glucose decreased, whereas the PA for L-[14C]glucose remained constant, as the perfusate concentration of D-glucose was increased. In the presence of no added unlabelled D-glucose in the perfusate, the PA for L-[14C]glucose equaled one-fifth the PA for D-[14C]glucose. These results demonstrate self-saturation, competitive inhibition, and stereospecificity of glucose transfer, and for the first time show a unidirectional facilitated transport mechanism for D-monosaccharides at capillaries of mammalian peripheral nerve. The data were fit to a model for facilitated transport and passive diffusion. The half-saturation constant and maximal rate of transport for the saturable component of D-glucose influx equaled 23 +/- 11 mumol X ml-1 and 6.6 +/- 3.2 X 10(-3) mumol X s-1 X g-1, respectively. The constant of nonsaturable glucose influx equaled 0.5 +/- 0.1 X 10(-4) s-1. At normal plasma glucose concentrations, the saturable component comprises about 80% of total D-glucose influx into nerve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The influence of 0.5 mM gamma-hexachlorocyclohexane (gamma-HCH, lindane) on glucose transport has been investigated using the analog 3-O-methyl-D-(U-14C)glucose. The glucose uptake was lineal for at least 10 sec. Preincubation of dissociated brain cortex cells with lindane decreased the transport of glucose with respect to the controls. The treatment of brain cortex cells with other organochlorine compounds indicated that the alpha-, delta-HCH isomers and dieldrin reproduced the same inhibitory pattern, while beta-HCH and endrin were inactive. The total radioactivity incorporated into CO2 from (U-14C) glucose in the cerebral cortex is also inhibited by lindane in a time dependent manner.  相似文献   

8.
Kinetic profiles for sucrose, glucose and 3-OMG glucose were determined in leaf discs of Phaseolus coccinius L. (cv. Scarlet). All three sugars exhibited identical uptake kinetics. At sugar concentrations below 25 m M , transport was due to an active, carrier-mediated transport system. A linear component was the dominant mode of uptake at sugar concentrations above 25 m M . Sucrose and glucose carriers were specific for these sugars, since no uptake inhibition was observed from competing sugars. Sucrose was not hydrolyzed by leaf tissue because the label in asymetrically labeled sucrose was not randomized. Furthermore, no label was present in hexose fractions when tissue was incubated with [84C]-sucrose. Therefore, [14C]-sucrose uptake did not reflect hexose uptake.
Both saturable and linear components of uptake contribute significantly to total uptake rates. The former, however, is more important when apoplastic sugar concentrations are low. The molecular nature of the linear component is not well understood but accounts for most of the uptake at high sugar concentrations.  相似文献   

9.
Stereospecific glucose transport was assayed and characterized in bovine cardiac sarcolemmal vesicles. Sarcolemmal vesicles were incubated with D-[3H]glucose or L-[3H]glucose at 25 degrees C. The reaction was terminated by rapid addition of 4 mM HgCl2 and vesicles were immediately collected on glass fiber filters for quantification of accumulated [3H]glucose. Non-specific diffusion of L-[3H]glucose was never more than 11% of total D-[3H]glucose transport into the vesicles. Stereospecific uptake of D-[3H]glucose reached a maximum level by 20 s. Cytochalasin B (50 microM) inhibited specific transport of D-[3H]glucose to the level of that for non-specific diffusion. The vesicles exhibited saturable transport (Km = 9.3 mM; Vmax = 2.6 nmol/mg per s) and the transporter turnover number was 197 glucose molecules per transporter per s. The molecular sizes of the cytochalasin B binding protein and the D-glucose transport protein in sarcolemmal vesicles were estimated by radiation inactivation. These values were 77 and 101 kDa, respectively, and by the Wilcoxen Rank Sum Test were not significantly different from each other.  相似文献   

10.
The effect of cell turgor on sugar uptake in strawberry fruit cortex tissue   总被引:1,自引:0,他引:1  
A reduction in cell turgor has been shown to stimulate sugar uptake in several plant sink tissues and it may regulate the import of assimilate into the sink apoplast, as well as maintain cell turgor. To determine whether cell turgor influences sugar uptake by strawberry (Fragaria x ananassa Duch. cv. Brighton) fruit cortex tissue, disks were cut from greenhouse-grown primary fruit at the green-white stage of development and placed in buffered incubation solutions containing either mannitol or ethylene glycol as an osmoticum. Cell turgor of fruit disks was calculated from the difference between the water potential of bathing solution and tissue solute potential after incubation at various osmolarities. Cell turgor increased when tissue disks were placed into mannitol incubation solutions more dilute than the water potential of fresh tissue (about 415 mOsmol kg?1). The rate of uptake of [14C]-sucrose or [14C]-glucose decreased as osmolarity of the incubation solution increased, i.e. as cell turgor declined. Cell turgor and the rate of [14C]-sucrose uptake were unaffected when rapidly permeating ethylene glycol was used as an osmoticum. A decrease in cell turgor reduced both the Vmax of the saturable (carrier mediated) kinetic component of sucrose uptake, and the slope of the linear (diffusional) component. The sulfhydryl binding reagent p-chloromercuibenzenesulfonic acid, an inhibitor of the plasma membrane sucrose carrier, strongly inhibited only the saturable component of sucrose uptake. Increased uptake of the nonmetabolizable sugar, O-methyl-glucose, at high turgor was similar to that of glucose, indicating that carrier activity was influenced by cell turgor, not cell metabolism. Turgor did not influence efflux of [14C]-sucrose from disks and had no effect on cell viability. Strawberry fruit cells do not possess a sugar uptake system that is stimulated by a reduction in turgor.  相似文献   

11.
The uptake of D-glucose by Acholeplasma laidlawii B occurs via a mediated transport process, as shown by the following observations: (i) glucose permeates A. laidlawii B cells at a rate at least 100 times greater than would be expected if its entry occurred only by simple passive diffusion; (ii) the apparent activation energy for glucose uptake in A. laidlawii is significantly lower than that expected and observed for the passive permeation of this sugar; (iii) glucose uptake appears to be a saturable process; (iv) glucose uptake can be completely inhibited by low concentrations of phloretin and phlorizin; and (v) glucose uptake is markedly inhibited at temperatures above 45 C, whereas the passive entry of erythritol continues to increase logarithmically until at least 60 C. The metabolism of D-glucose by this organism is rapid and, at low glucose concentrations, the intracellular radioactivity derived from D-[14-C]glucose is at any given time a reflection of the net effect of glucose transport, glucose metabolism, and loss from the cell of radioactive metabolic products. Care must thus be taken when attempting to determine the rate of glucose transport by measuring the accumulation by the cells of the total radioactivity derived from D-[14-C]glucose. The rate of uptake of D-glucose by A. laidlawii B cells is markedly dependent on the fatty acid composition and cholesterol content of the plasma membrane and exhibits a direct dependence on the fluidity of the membrane lipids as measured by their reversible, thermotropic gel to liquie-crystalline phase transition temperatures. In contrast to the transport rates, the apparent activation energy for glucose uptake above the phase transition temperature is not dependent on membrane lipid composition. At the temperature range within the membrane lipid phase transition region, the apparent activation energy of glucose uptake is different from the activation energy observed at temperatures above the phase transition. This may reflect the superimposed operation within the phase transition region of more than one temperature-dependent process.  相似文献   

12.
Phosphorylation of 3-O-methyl-D-glucose by yeast and beef hexokinase   总被引:1,自引:0,他引:1  
Beef heart hexokinase and yeast hexokinase both catalyzed the phosphorylation of 3-O-[14C]methyl-D-glucose. The maximal velocity was 3 orders of magnitude lower and the Km for the glucose analogue 40-120-times higher than those observed with D-[U-14C]glucose. Hence, 3-O-methyl-D-glucose should not be considered as a truly nonmetabolized analogue of D-glucose.  相似文献   

13.
Cationic amino acids were recently found to stimulate amylase release from rat parotid cells. The possible relevance of their oxidative catabolism to such a secretory stimulation was investigated. D-Glucose, which was efficiently metabolized in parotid cells and which augmented O2 uptake above basal value, failed to affect basal or stimulated amylase release. L-Arginine, L-lysine and L-histidine failed to stimulate the oxidation of either exogenous D-[6-14C]glucose or endogenous nutrients in cells pre-labelled with [U-14C]palmitate or L-[U-14C]glutamine. The oxidation of L-[U-14C]arginine, L-[U-14C]ornithine, L-[U-14C]lysine and L-[U-14C]histidine, all tested at a 10 mM concentration, was much lower than that of D-[U-14C]glucose (5.6 mM). These findings argue against the view that the stimulation of amylase release by cationic amino acids would be related to their role as a source of energy in the parotid cells.  相似文献   

14.
Purified rat liver lysosomes ('tritosomes') were prepared from rats injected with Triton WR-1339. 2. The water space of tritosomes, measured by using [3H]water and [14C]sucrose, was 2.15 +/- 0.72 microliter/mg of protein (mean +/- S.E.M., n = 12). 3. Tritosomes, when compared with a crude preparation of normal lysosomes by an indirect method of study, showed sugar specificity but decreased stereospecificity of sugar uptake. 4. At 125 mM the relative rates of net uptake of D-[14C]ribose, D-[14C]- or D-[3H]glucose and 2-deoxy-D-[3H]glucose were the same as that inferred from the indirect study. 5. The entry of D-[3H]glucose into tritosomes showed concentration-dependence suggestive of saturation, with a Km of 48 +/- 18 mM (4). 6. D- and L-glucose, D-ribose, 2-deoxy-D-glucose and D-mannose competed with D-[14C]glucose or D-[14C]ribose for uptake. 7. Cytochalasin B inhibited D-[3H]glucose uptake. 8. Uptake of 1 mM-L-[14C]glucose was slower than for 1 mM-D-[14C]glucose. 9. It is concluded that a facilitated-diffusion transport system is present in purified rat liver lysosomes.  相似文献   

15.
Acivicin inhibits gamma-glutamyl transpeptidase activity in human keratinocytes in culture. Treatment of these cells with acivicin produces a decrease in the uptake of L-[U-14C]alanine, 2-amino-[1-14C]-isobutyrate, L-[U-14C]leucine and 1-aminocyclopentane-1-[14C]carboxylate. D-[U-14C]glucose uptake is not affected by the presence of acivicin. These results support, for the first time in vitro, the hypothesis that the gamma-glutamyl cycle may be involved in amino acid uptake by human cells.  相似文献   

16.
A quenched-flow apparatus is described and applied to measurements of the hydrolysis of 2,4-dinitrophenyl acetate by sodium hydroxide and the entry of D-[U-14C]glucose into human red blood cells at 37 degrees C. Glucose influx into red cells was a saturable process obeying Michaelis-Menten kinetics with a Km for glucose of 6.6 +/- 0.61 mM and a maximum rate for glucose entry under "zero trans" conditions of 20.7 +/- 0.76 mmol (L cell water)-1 s-1. The technique used requires only readily available laboratory equipment and should be easily adaptable to the study of other rapid transport processes.  相似文献   

17.
Sener  A.  Scruel  O.  Louchami  K.  Jijakli  H.  Malaisse  W.J. 《Molecular and cellular biochemistry》1999,194(1-2):133-145
The analog of D-glucose, 3-O-methyl-D-glucose, is thought to delay the equilibration of D-glucose concentration across the plasma membrane of pancreatic islet B-cells, but not to exert any marked inhibitory action upon the late phase of glucose-stimulated insulin release. In this study, however, 3-O-methyl-D-glucose, when tested in high concentrations (30-80 mM) was found to cause a rapid, sustained and not rapidly reversible inhibition of glucose-induced insulin release in rat pancreatic islets. In relative terms, the inhibitory action of 3-O-methyl-D-glucose was more marked at low than high concentrations of D-glucose. It could not be attributed to hyperosmolarity and appeared specific for the insulinotropic action of D-glucose, as distinct from non-glucidic nutrient secretagogues. Although 3-O-methyl-D-glucose and D-glucose failed to exert any reciprocal effect upon the steady-state value for the net uptake of these monosaccharides by the islets, the glucose analog inhibited D-[5-3H]glucose utilization and D-[U-14C]glucose oxidation. This coincided with increased 86Rb outflow and decreased 45Ca outflow from prelabelled islets, as well as decreased 45Ca net uptake. A preferential effect of 3-O-methyl-D-glucose upon the first phase of glucose-stimulated insulin release was judged compatible with an altered initial rate of D-glucose entry into islet B-cells. The long-term inhibitory action of the glucose analog upon the metabolic and secretory response to D-glucose, however, may be due, in part at least, to an impaired rate of D-glucose phosphorylation. The phosphorylation of the hexose by beef heart hexokinase and human B-cell glucokinase, as well as by parotid and islet homogenates, was indeed inhibited by 3-O-methyl-D-glucose. The relationship between insulin release and D-glucose utilization or oxidation in the presence of 3-O-methyl-D-glucose was not different from that otherwise observed at increasing concentrations of either D-glucose or D-mannoheptulose. It is concluded, therefore, that 3-O-methyl-D-glucose adversely affects the metabolism and insulinotropic action of D-glucose by a mechanism largely unrelated to changes in the intracellular concentration of the latter hexose.  相似文献   

18.
Monosaccharide transport into lactating-rat mammary acini.   总被引:5,自引:5,他引:0       下载免费PDF全文
The uptake and release of 3-O-methyl-D-[3H]glucose at 37 degrees C by acini, prepared from lactating-rat mammary gland with collagenase, was inhibited by glucose, phloretin, cytochalasin B, HgCl2 and low temperature. Uptake and phosphorylation of 2-deoxy-D-[3H]glucose, studied in greater detail, could be ascribed to a specific, saturable, inhibitable, process of apparent Km 16 mM and Vmax. approx. 56 nmol/min per mg of protein, plus a non-specific, non-inhibitable process that was monitored with [14C]fructose. The mean rate of uptake of 5 mM-2-deoxyglucose (16 nmol/min per mg of protein) was similar to the rate of consumption of 5 mM-glucose, suggesting that transport was a rate-limiting step in the overall metabolism of glucose. This accords with evidence for a glucose gradient across the plasma membrane.  相似文献   

19.
The mechanism of glucose entry into human vascular endothelial cells was studied in monolayer cultures of normal (primary) and virally (SV40) transformed umbilical vein endothelium. Radioisotopic uptake studies with the glucose analogues 2-deoxy-D-glucose, and 3-O-methyl-D-glucose, and the nonmetabolizable stereoisomer L-glucose, indicated the presence of a saturable, stereospecific hexose carrier mechanism in both cell types. In other experiments with D-glucose and 3-O-methyl-D-glucose, the phenomenon of countertransport was demonstrable. Hexose transport was not affected by KCN, dinitrophenol, or ouabain, but was inhibited by phloretin and phlorizin in a pattern consistent with facilitated diffusion. Kinetic constants were obtained for both 2-deoxy-D-glucose and 3-O-methyl-D-glucose uptake. Similar Km values (range, 3.3-4.7 mM) were noted with normal and transformed cells, whereas the apparent Vmax was 0.56 nmol/microliter cytosol/minute for primary cells and 1.7-2.5 nmol/mu cytosol/minute for transformed cells. Under standard culture conditions, as well as following 18 hours of serum deprivation, insulin at concentrations up to 10(-5) M did not appear to influence hexose uptake in either cell type. Metabolism of 14C(U)-D-glucose to 14CO2 also was not stimulated by insulin. The presence of an insulin-insensitive, facilitated transport system for glucose in vascular endothelium has relevance for glucose metabolism in this tissue, and potentially for the association of certain vascular diseases (e.g., diabetic microangiopathy, atherosclerosis) with altered glucose homeostasis.  相似文献   

20.
The data presented here are consistent with a proton-sugar co-transport in germinated pollen of Lilium longiflorum Thunb. Optimal uptake occurs at pH 5.0. A K(m) of 1.7 to 1.8 millimolar is obtained from the initial rate of pH change induced by sucrose uptake as well as from uptake of [U-(14)C]-sucrose. The energy of activation is - 11 kilocalories mole(-1). The effect of several inhibitors and sugar competitors on [U-(14)C]sucrose and d-[U-(14)C] glucose uptake is given. The possibility of hydrolysis of sucrose prior to its transport into the pollen tube has been considered and reasons for choosing a sucrose-type uptake are presented. The possible in vivo significance of this co-transport process during pollen germination is discussed. Germinated pollen has features to recommend it as an experimental system of choice for studies of sugar uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号