共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Shlomo Eisenberg George Korza John Carson Ivan Liachko Bik-Kwoon Tye 《The Journal of biological chemistry》2009,284(37):25412-25420
The Mcm10 protein is essential for chromosomal DNA replication in eukaryotic cells. We purified the Saccharomyces cerevisiae Mcm10 (ScMcm10) and characterized its DNA binding properties. Electrophoretic mobility shift assays and surface plasmon resonance analysis showed that ScMcm10 binds stably to both double strand (ds) DNA and single strand (ss) DNA. On short DNA templates of 25 or 50 bp, surface plasmon resonance analysis showed a ∼1:1 stoichiometry of ScMcm10 to dsDNA. On longer dsDNA templates, however, multiple copies of ScMcm10 cooperated in the rapid assembly of a large, stable nucleoprotein complex. The amount of protein bound was directly proportional to the length of the DNA, with an average occupancy spacing of 21–24 bp. This tight spacing is consistent with a nucleoprotein structure in which ScMcm10 is aligned along the helical axis of the dsDNA. In contrast, the stoichiometry of ScMcm10 bound to ssDNA of 20–50 nucleotides was ∼3:1 suggesting that interaction with ssDNA induces the assembly of a multisubunit ScMcm10 complex composed of at least three subunits. The tight packing of ScMcm10 on dsDNA and the assembly of a multisubunit complex on ssDNA suggests that, in addition to protein-DNA, protein-protein interactions may be involved in forming the nucleoprotein complex. We propose that these DNA binding properties have an important role in (i) initiation of DNA replication and (ii) formation and maintenance of a stable replication fork during the elongation phase of chromosomal DNA replication.MCM10 is a ubiquitous, conserved gene essential for DNA replication in eukaryotes. It was first discovered in yeast genetic screens designed to detect mutants defective in DNA synthesis and minichromosome maintenance (1, 2). In vivo, Mcm10 associates with chromatin and chromosomal replication origins in human cells (hMcm10), Xenopus laevis (XMcm10), Schizosaccharomyces pombe (SpMcm10), and Saccharomyces cerevisiae (ScMcm10) (3–6). In S. cerevisiae, initiation of chromosomal replication occurs at multiple specific sites known as autonomously replicating sequences (ARSs)2 (7). Mutations in MCM10 enhance the loss rate of plasmids bearing specific ARSs (8), suggesting a function for ScMcm10 in initiation.In eukaryotic systems replication initiation is a cell cycle-regulated process characterized by a multistep sequential loading of ORC, Cdc6, Cdt1, and the Mcm2–7 complex onto the origin in G1 to form the pre-RC complex. Binding of ORC, Cdc6p, and Cdt1p to chromatin is a prerequisite for the recruitment of Mcm2–7 (9, 10). The next step in the assembly of the initiation replication apparatus in S. cerevisiae involves protein kinases (Cdc28 and Cdc7/Dbf4), and recruitment of Mcm10, Cdc45, and the GINS complex. The mechanism for targeting Mcm10 to replications origins is unknown. However, recent studies in S. cerevisiae have shown that Mcm10 and Mcm2–7 physically interact (6, 11). It is now believed that in late G1, chromatin-bound Mcm2–7 is responsible for the recruitment of Mcm10 presumably via protein-protein interactions (12). Prior studies in the Xenopus laevis system reached similar conclusions (4). Additional interactions of Mcm10 with other components of the pre-RC cannot be excluded (13).A key step in the initiation of replication is the local melting of an origin DNA sequence, which occurs at the G1/S transition and throughout the S phase. The mechanism of this essential DNA-melting process is not understood. There is no evidence in S. cerevisiae that the assembled pre-RC complex leads to the melting of an origin DNA sequence. This unwinding may occur only following the recruitment of Mcm10, raising the possibility that Mcm10 is a key component of the initiation machinery responsible for this process. Results of a study in the Xenopus egg extract system (4), which showed that omission of XMcm10 blocks unwinding of plasmid DNA and initiation of DNA replication, are consistent with this notion. An additional function of Mcm10 in initiation is in the recruitment of Cdc45 to replication origins, presumably via Mcm10-Cdc45 physical interactions (5, 14). Cdc45 is believed to be important for the activation of replication origins and the assembly of the replication elongation complex (15). Upon initiation of DNA replication, ScMcm10 moves from the origin to origin-proximal sequences suggesting that ScMcm10 associates with moving replication forks (12) and is consistent with the observation that elevated temperatures cause pausing of replication forks in a mcm10-1 ts mutant (8). Both ScMcm10 and SpMcm10 interact with DNA polymerase α supporting the notion that replication fork movement requires Mcm10. ScMcm10 and polymerase α form a complex on and off the DNA in vivo (12). In S. pombe, SpMcm10 stimulates the activity of polymerase α in vitro and associates with a primase activity (16, 17) that has not been reported in other eukaryotes (18).Previous studies with Mcm10 in other systems showed that Mcm10 binds DNA. Using a filter binding assay Fien and Hurwitz (16) reported that SpMcm10 from S. pombe binds well to ssDNA but barely interacts (20-fold lower affinity) with dsDNA. It has been suggested that binding of SpMcm10 to ssDNA is important for the recruitment of polymerase α (16). Recently, it has been reported that a DNA binding activity is also associated with XMcm10 protein from X. laevis. Measurements of fluorescence anisotropy were used to show binding of XMcm10 to short, 25-nucleotide-long oligonucleotides (18). These studies have shown that XMcm10 has similar affinities for ssDNA and dsDNA. Unlike SpMcm10, which harbors a single DNA-binding domain in the N-terminal half of the protein, XMcm10 seems to contain two distinct domains for binding DNA. The biological implication of having two DNA-binding domains is not clear.It appears that there are differences in the quaternary structure of Mcm10 from different organisms. Although SpMcm10 and XMcm10 may be a homodimer in solution (17, 18), a recent electron microscopy study suggested that human hMcm10 has a hexameric ring structure (19). The same study reported that hMcm10 interacts with ssDNA but failed to bind dsDNA. The differences in structure and DNA binding properties may reflect differences in the function of Mcm10 in various organisms as well as in the protein preparations.Here we report, for the first time, the characterization of the DNA binding properties of purified Mcm10 from S. cerevisiae. We show that ScMcm10 forms a stable complex with dsDNA and ssDNA. In addition, we demonstrate that dsDNA longer than 50 bp sustains oligomerization of ScMcm10. The number of ScMcm10 molecules bound is directly proportional to the size of the dsDNA, suggesting that ScMcm10 is tightly packed on the dsDNA, perhaps in a head to tail oligomeric structure. In contrast to a 25-bp-long dsDNA, which supports the binding of a single copy of ScMcm10, ssDNA containing only 20 nucleotides may sustain binding of as many as three copies of ScMcm10, suggesting that a ScMcm10 complex composed of at least 3 subunits assembles on ssDNA. We believe that these distinct binding properties to dsDNA and ssDNA are important for the ScMcm10 functions in initiation, formation of replication forks, and the maintenance of replication fork progression during chromosomal DNA replication. 相似文献
6.
Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. 总被引:32,自引:4,他引:32 下载免费PDF全文
The genes of Saccharomyces cerevisiae coding for the mitochondrial threonine and tryptophan tRNA synthetases and for a putative mitochondrial ribosomal protein have been cloned. These, and the previously cloned gene for a mitochondrial elongation factor, were used to disrupt or partially delete the wild-type chromosomal copies of the genes in the respiratory-competent strain W303. In each case, inactivation of a gene whose product is required for mitochondrial protein synthesis causes an instability in mitochondrial DNA. Although intact mitochondrial genomes are rapidly and quantitatively eliminated in the protein synthesis defective strains, specific rho- genomes can be maintained stably over many generations. These results indicate that mitochondrial protein synthesis is required for the propagation of wild-type mitochondrial DNA in yeast. 相似文献
7.
Mcm10 has recently been found to play a crucial role in multiple steps of the DNA replication initiation process in eukaryotes. Here, we have examined the role of Mcm10 in assembling initiation factors at a well-characterized yeast replication origin, ARS1. We find that the pre-replication complex (pre-RC) components Cdc6 and Mcm7 associate with ARS1 in the mcm10-1 mutant, suggesting that establishment of the pre-RC is not compromised in this mutant. Association of Cdc45 with ARS1 is reduced in the mcm10-1 mutant, suggesting that Mcm10 is involved in recruiting Cdc45 to the pre-RC. We find that overexpression of either Mcm10-1 or Cdc45 suppresses the growth defect of mcm10-1, and that a physical interaction between Cdc45 and Mcm10 is disrupted in the mcm10-1 mutant. Our results show that interaction between the Mcm10 and Cdc45 proteins facilitates the recruitment of Cdc45 onto the ARS1 origin. 相似文献
8.
Murphy GA Spedale EJ Powell ST Pillus L Schultz SC Chen L 《Journal of molecular biology》2003,334(4):769-780
Saccharomyces cerevisiae Sir4p plays important roles in silent chromatin at telomeric and silent mating type loci. The C terminus of Sir4p (Sir4CT) is critical for its functions in vivo because over-expression or deletion of Sir4CT fragments disrupts normal telomeric structure and abolishes the telomere position effect. The 2.5A resolution X-ray crystal structure of an Sir4CT fragment (Sir4p 1217-1358) reveals a 72 residue homodimeric, parallel coiled coil, burying an extensive 3600A(2) of surface area. The crystal structure is consistent with results of protein cross-linking and analytical ultracentrifugation results demonstrating that Sir4CT exists as a dimer in solution. Disruption of the coiled coil in vivo by point mutagenesis results in total derepression of telomeric and HML silent mating marker genes, suggesting that coiled coil dimerization is essential for Sir4p-mediated silencing. In addition to the coiled coil dimerization interface (Sir4CC interface), a crystallographic interface between pairs of coiled coils is significantly hydrophobic and buries 1228A(2) of surface area (interface II). Remarkably, interface II mutants are deficient in telomeric silencing but not in mating type silencing in vivo. However, point mutants of interface II do not affect the oligomerization state of Sir4CT in solution. These results are consistent with the hypothesis that interface II mimics a protein interface between Sir4p and one of its protein partners that is essential for telomeric silencing but not mating type silencing. 相似文献
9.
Cook CR Kung G Peterson FC Volkman BF Lei M 《The Journal of biological chemistry》2003,278(38):36051-36058
Mcm10 is a DNA replication factor that interacts with multiple subunits of the MCM2-7 hexameric complex. We report here that Mcm10 self-interacts and assembles into large homocomplexes (approximately 800 kDa). A conserved domain of 210 amino acid residues is sufficient for mediating self-interaction and complex assembly. A novel zinc finger within the conserved domain, CX10CX11CX2H, is essential for the homocomplex formation. Mutant alleles with amino acid substitutions at conserved cysteines and histidine in the zinc finger fail to assemble homocomplexes. A defect in homocomplex assembly correlates with defects in DNA replication and cell growth in the mutants. These observations suggest that homocomplex assembly is essential for Mcm10 function. Multisubunit Mcm10 homocomplexes may provide the structural basis for Mcm10 to interact with multiple subunits of the MCM2-7 hexamer. 相似文献
10.
The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. 总被引:1,自引:1,他引:1 下载免费PDF全文
H Huang A Kahana D E Gottschling L Prakash S W Liebman 《Molecular and cellular biology》1997,17(11):6693-6699
It has been previously shown that genes transcribed by RNA polymerase II (RNAP II) are subject to position effect variegation when located near yeast telomeres. This telomere position effect requires a number of gene products that are also required for silencing at the HML and HMR loci. Here, we show that a null mutation of the DNA repair gene RAD6 reduces silencing of the HM loci and lowers the mating efficiency of MATa strains. Likewise, rad6-delta reduces silencing of the telomere-located RNAP II-transcribed genes URA3 and ADE2. We also show that the RNAP III-transcribed tyrosyl tRNA gene, SUP4-o, is subject to position effect variegation when located near a telomere and that this silencing requires the RAD6 and SIR genes. Neither of the two known Rad6 binding factors, Rad18 and Ubr1, is required for telomeric silencing. Since Ubrl is the recognition component of the N-end rule-dependent protein degradation pathway, this suggests that N-end rule-dependent protein degradation is not involved in telomeric silencing. Telomeric silencing requires the amino terminus of Rad6. Two rad6 point mutations, rad6(C88A) and rad6(C88S), which are defective in ubiquitin-conjugating activity fail to complement the silencing defect, indicating that the ubiquitin-conjugating activity of RAD6 is essential for full telomeric silencing. 相似文献
11.
Thioredoxin is required for vacuole inheritance in Saccharomyces cerevisiae 总被引:1,自引:0,他引:1 下载免费PDF全文
《The Journal of cell biology》1996,132(5):787-794
The vacuole of Saccharomyces cerevisiae projects a stream of tubules a and vesicles (a segregation structure) into the bud in early S phase. We have described an in vitro reaction, requiring physiological temperature, ATP, and cytosol, in which isolated vacuoles form segregation structures and fuse. This in vitro reaction is defective when reaction components are prepared from vac mutants that are defective in this process in vivo, Fractionation of the cytosol reveals at least three components, each of which can support the vacuole fusion reaction, and two stimulatory fractions. Purification of one low molecular weight activity (LMA1) yields a heterodimeric protein with a thioredoxin subunit. Most of the thioredoxin of yeast is in this complex rather than the well-studied monomer. A deletion of both S. cerevisiae thioredoxin genes causes a striking vacuole inheritance defect in vivo, establishing a role for thioredoxin as a novel factor in this trafficking reaction. 相似文献
12.
Gaganmeet Singh Chadha Agnieszka Gambus Peter J. Gillespie 《Cell cycle (Georgetown, Tex.)》2016,15(16):2183-2195
During S phase, following activation of the S phase CDKs and the DBF4-dependent kinases (DDK), double hexamers of Mcm2-7 at licensed replication origins are activated to form the core replicative helicase. Mcm10 is one of several proteins that have been implicated from work in yeasts to play a role in forming a mature replisome during the initiation process. Mcm10 has also been proposed to play a role in promoting replisome stability after initiation has taken place. The role of Mcm10 is particularly unclear in metazoans, where conflicting data has been presented. Here, we investigate the role and regulation of Mcm10 in Xenopus egg extracts. We show that Xenopus Mcm10 is recruited to chromatin late in the process of replication initiation and this requires prior action of DDKs and CDKs. We also provide evidence that Mcm10 is a CDK substrate but does not need to be phosphorylated in order to associate with chromatin. We show that in extracts depleted of more than 99% of Mcm10, the bulk of DNA replication still occurs, suggesting that Mcm10 is not required for the process of replication initiation. However, in extracts depleted of Mcm10, the replication fork elongation rate is reduced. Furthermore, the absence of Mcm10 or its phosphorylation by CDK results in instability of replisome proteins on DNA, which is particularly important under conditions of replication stress. 相似文献
13.
14.
Mos10 (Vps60) is required for normal filament maturation in Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Köhler JR 《Molecular microbiology》2003,49(5):1267-1285
Early pseudohyphal growth of Saccharomyces cerevisiae is well described, and is known to be subject to a complex web of developmental regulation. In maturing filaments, young cells differ significantly from their pseudohyphal progenitors, in their shape, and in their timing and direction of cell division. The changes that occur during filament maturation result in round and oval cells surrounding and covering the pseudohyphal filament. In a screen for mutants that affect this process, a vacuolar protein sorting gene, MOS10 (VPS60), and a gene encoding an alpha subunit of the proteasome core, PRE9, were isolated. Characterization of the mos10/mos10 phenotype showed that the process of filament maturation is regulated differently from early filamentous growth, and that the requirement for Mos10 is limited to the maturation stage of pseudohyphal development. The mos10/mos10 phenotype is unlikely to be an unspecific effect of disruption of endocytosis or vacuolar protein sorting, because it is not recapitulated by mutants in other genes required for these processes. Disruption of homologues of MOS10, which act as components of the ESCRT-III complex in targeting proteins for vacuolar degradation, results in abnormal early pseudohyphal growth, not in the filament maturation defect seen in mos10/mos10. Thus, Mos10 may function in targeting of specific cargo proteins for degradation, under conditions particular to maturing filaments. 相似文献
15.
16.
17.
Victoria Gavrias Alex Andrianopoulos Carlos J. Gimeno William E. Timberlake 《Molecular microbiology》1996,19(6):1255-1263
18.
19.