首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
capR (lon) mutants of Escherichia coli K-12 are mucoid and sensitive to ultraviolet (UV) and X-ray radiation as well as to nitrofurantoin. The mutants form filaments after exposure to these agents. capR mutants are also conditionally lethal since they die when plated on complex medium even without UV treatment; this phenomenon is designated "complex medium-induced killing". Furthermore, capR mutants are poorly lysogenized by bacteriophage lambda. Second-site revertants were isolated by plating on media containing nitrofurantoin. All 17 of the independent revertants studied were still mucoid but resistant to UV radiation. Sixteen of the 17 revertants contained a mutation, sulA, that cotransduced with pyrD (21 min). A second locus, sulB, was also found that cotransduced with leu (2 min). Studies with partial diploids (F'pyrD+ sulA+/pyrD36 sulA17 capR9 (lon) demonstrated that sulA+ is dominant to sulA; thus the indicated partial diploid is UV sensitive, whereas the haploid parent is UV resistant. Furthermore, two other phenotypic traits of capR (lon) mutants were reversed by the sul mutation:complex medium-induced killing and the inability of lambda phage to efficiently lysogenize capR strains. On the basis of these and other results, the following model is suggested to explain capR (lon) and sul gene interactions. capR (lon) is a regulator gene for the structural genes sulA+ and sulB+. Depression of both sul operons results in UV sensitivity and decreased ability of lambda to lysogenize, whereas inactivation of either sul+ protein by mutation to sul prevents these phenomena.  相似文献   

2.
Cells containing the pleiotropic Escherichia coli mutation lon filament extensively and die after exposure to ultraviolet light. Outside suppressors of the ultraviolet sensitivity, called sul, have previously been described at two loci; these mutations reverse the ultraviolet sensitivity of lon strains but do not affect the mucoidal or degradation defect of these strains. An isogenic set of strains carrying combinations of lon, sulA, and sulI was constructed, and their behavior during normal growth and after ultraviolet treatment was studied. sulA mutations had no detectable phenotype in lon+ cells; the lon sulA strains filamented transiently after ultraviolet irradiation, as did lon+ sul+ cells. We found that the sulB mutation, which alters cell morphology and slows recovery from transient filamentation after ultraviolet treatment, was epistatic to both lon and sulA. Whereas sulA mutations were recessive to the wild-type allele, sulB was partially dominant. The simplest model to account for our observations is that sulA and lon participate in a pathway of filamentation independent of that which produces transient filamentation in wild-type strains; sulB product may be the target of sulA action and may play a role in normal cell division.  相似文献   

3.
Escherichia coli lon mutants are sensitive to UV light and other DNA-damaging agents. This sensitivity is due to the loss of the lon-encoded ATP-dependent proteolytic activity which results in increased stability of the cell division inhibitor SulA. Introduction of the multicopy plasmid pZAQ containing the ftsZ gene, which is known to increase the level of FtsZ, suppressed the sensitivity of lon mutants to the DNA-damaging agents UV and nitrofurantoin. Alterations of pZAQ which reduced the expression of ftsZ reduced the ability of this plasmid to suppress the UV sensitivity. Examination of the kinetics of cell division revealed that pZAQ did not suppress the transient filamentation seen after exposure to UV, but did suppress the long-term inhibition that is normally observed. lon strains carrying pZAQ could stably maintain a multicopy plasmid carrying sulA (pBS2), which cannot otherwise be introduced into lon mutants. In addition, the increased temperature sensitivity of lexA(Ts) strains containing pBS2 was suppressed by pZAQ. These results suggest that SulA inhibits cell division by inhibiting FtsZ and that this interaction is stoichiometric.  相似文献   

4.
Mutation in the gene lon (capR) of Escherichia coli K-12 causes conditional inhibition of cell division. Two-dimensional gel electrophoresis was used to compare polypeptides from isogenic capR+ and capR strains. One polypeptide was present in the capR strain but absent in the wild-type strain, and it was proteolyzed when the pure capR+ protease was added to the capR extract. This polypeptide could only be detected in the capR strain when cell division was inhibited, and its synthesis was independent of the SOS response.  相似文献   

5.
The recA432 mutant allele was isolated (T. Kato and Y. Shinoura, Mol. Gen. Genet. 156:121-131, 1977) by virtue of its defect in cellular mutagenesis (Mut-) and its hypersensitivity to damage by UV irradiation (UVs), which were phenotypes expected for a recA mutant. However, we found that in a different genetic background (lexA51 sulA211 uvrB+), recA432 mutants expressed certain mutant phenotypes but not the Mut- and UVs phenotypes (D.G. Ennis, N. Ossanna, and D.W. Mount, J. Bacteriol. 171:2533-2541, 1989). We present several lines of evidence that these differences resulted from the sulA genotype of the cell and that the apparent UVs and Mut- phenotypes of the sulA+ derivatives resulted from lethal filamentation of induced cells because of persistent derepression of sulA. First, transduction of sulA(Def) mutations into the recA432 strains restored cellular mutagenesis and resistance to UV. Second, recA432 sulA+ strains underwent filamentous death following SOS-inducing treatments. Third, cleavage of LexA repressor in a recA432 strain continued at a rapid rate long after UV induction, at a time when cleavage of the repressor in the recA+ parental strain had substantially declined. Fourth, we confirmed that a single mutation (recA432) conferring both the UVs and Mut- phenotypes mapped to the recA gene. These findings indicate that the RecA432 mutant protein is defective in making the transition back to the deactivated state following SOS induction; thus, the SOS-induced state of recA432 mutants is prolonged and can account for an excess of SulA protein, leading to filamentation. These results are discussed in the context of molecular models for RecA activation for LexA and UmuD cleavage and their roles in the control of mutagenesis and cell division in the SOS response.  相似文献   

6.
Treatments that damage DNA in Escherichia coli result in the inhibition of cell division. This inhibition is controlled by the lexA-recA regulatory circuit and can be specifically uncoupled by the mutations sulA (sfiA) and sulB (sfiB), which map at 21 and 2 min, respectively. Presently it is thought that sulA codes for an inducible inhibitor of cell division, the expression of which is controlled directly by the lexA repressor. In this report, it is shown that sulB is an allele of ftsZ, an essential cell division gene. A sulB mutation leads to an altered ftsZ gene product which is slightly thermosensitive and has an altered mobility on polyacrylamide gels. It is suggested that the altered ftsZ gene product is resistant to the sulA inhibitor, thus permitting cell division after induction of the SOS response. It is also shown that an increase in the gene dosage of ftsZ delays the onset of filamentation after SOS induction.  相似文献   

7.
The CapR protein is an ATP hydrolysis-dependent protease as well as a DNA-stimulated ATPase and a nucleic acid-binding protein. The sequences of the 5' end of the capR (lon) gene DNA and N-terminal end of the CapR protein were determined. The sequence of DNA that specifies the N-terminal portion of the CapR protein was identified by comparing the amino acid sequence of the CapR protein with the sequence predicted from the DNA. The DNA and protein sequences established that the mature protein is not processed from a precursor form. No sequence corresponding to an SOS box was found in the 5' sequence of DNA. There were sequences that corresponded to a putative -35 and -10 region for RNA polymerase binding. The capR (lon) gene was recently identified as one of 17 heat shock genes in Escherichia coli that are positively regulated by the product of the htpR gene. A comparison of the 5' DNA region of the capR gene with that of several other heat shock genes revealed possible consensus sequences.  相似文献   

8.
The uvrD gene in Escherichia coli encodes a 720-amino-acid 3'-5' DNA helicase which, although nonessential for viability, is required for methyl-directed mismatch repair and nucleotide excision repair and furthermore is believed to participate in recombination and DNA replication. We have shown in this study that null mutations in uvrD are incompatible with lon, the incompatibility being a consequence of the chronic induction of SOS in uvrD strains and the resultant accumulation of the cell septation inhibitor SulA (which is a normal target for degradation by Lon protease). uvrD-lon incompatibility was suppressed by sulA, lexA3(Ind(-)), or recA (Def) mutations. Other mutations, such as priA, dam, polA, and dnaQ (mutD) mutations, which lead to persistent SOS induction, were also lon incompatible. SOS induction was not observed in uvrC and mutH (or mutS) mutants defective, respectively, in excision repair and mismatch repair. Nor was uvrD-mediated SOS induction abolished by mutations in genes that affect mismatch repair (mutH), excision repair (uvrC), or recombination (recB and recF). These data suggest that SOS induction in uvrD mutants is not a consequence of defects in these three pathways. We propose that the UvrD helicase participates in DNA replication to unwind secondary structures on the lagging strand immediately behind the progressing replication fork, and that it is the absence of this function which contributes to SOS induction in uvrD strains.  相似文献   

9.
Lon is an ATP-dependent protease of Escherichia coli. The lon mutation has a pleiotropic phenotype: UV sensitivity, mucoidy, deficiency for lysogenization by bacteriophage lambda and P1, and lower efficiency in the degradation of abnormal proteins. All of these phenotypes are correlated with the loss of protease activity. Here we examine the effects of overproduction of one Lon substrate, SulA, and show that it protects two other substrates from degradation. To better understand this protection, we mutagenized the sulA gene and selected for mutants that have partially or totally lost their ability to saturate the Lon protease and thus can no longer protect another substrate. Some of the SulA mutants lost their ability to protect RcsA from degradation but could still protect the O thermosensitive mutant protein (Ots). All of the mutants retained their capacity to induce cell division inhibition. It was also found that deletion of the C-terminal end of SulA affected its activity but did not affect its susceptibility to Lon. We propose that Lon may have more than one specificity for peptide cleavage.  相似文献   

10.
The sfiA and sfiB mutations, originally isolated in thermoresistant ultraviolet-resistant revertants of a tif lon strain, also suppressed filamentation in tsl strains (mutated at the lexA locus). When deoxyribonucleic acid synthesis was arrested, however, sfi-independent filamentation occurred. Other SOS functions were not affected by sfiA and sfiB mutations; in particular, ultraviolet-induced repair and mutagenesis of bacterial deoxyribonucleic acid were normal, as was tsl-tif-induced synthesis of recA protein. Genetic studies (i) established the identity of map location of the sfiA and sulA loci, (ii) showed that the two sfiB mutations are recessive, and (iii) showed that of six independent sfiA mutations, three are recessive and three are dominant. One sfiB strain was shown to have a 6% growth disadvantage relative to a sfi+ or sfiA strain. It is proposed that the sfiA locus may define the structural gene of a hypothetical inducible SOS-associated division inhibitor.  相似文献   

11.
12.
Temperature-sensitive (ts) derivatives of plasmid pRMP1, the derivative of PBR322 containing restriction and modification (RM) genes of the PstI system, were obtained using hydroxylamine mutagenesis. One of the isolated plasmids responsible for the inhibition of Escherichia coli cell growth at 42 degrees C, pRMPts, was analyzed in this work. Cells of Rec+ strains carrying this plasmid were unable to divide at 42 degrees C and formed long non-septated filaments that died upon prolonged cultivation. Cells of the RecA- strains carrying pRMPts did not form filaments at 42 degrees C and rapidly disappeared. On agar media with or without ampicillin, Rec+ and RecA- strains with this plasmid formed colonies of temperature-resistant (tr) derivatives with frequencies ranging from 1.5 x 10(-4) to 4 x 10(-6) in independent clones. The structure of plasmids from cells of tr-derivatives of Rec+ and RecA- strains carrying plasmid pRMPts was analyzed by the set of restriction enzymes. Reversions to the temperature-resistant phenotype were shown to result from the following events: (1) the insertional inactivation of the PstI restriction enzyme gene in pRMPts (the insertion of the IS1 element); (2) deletions in plasmid DNA fragments that partially or completely cover the restriction enzyme gene; (3) point mutations; and (4) others. The effect of the chromosomal sulA mutation on the maintenance of the ts-plasmid in bacterial cells was studied at 42 degrees C. High efficiency loss of the plasmid was detected in pRMPts-carrying Rec+ cells with the sulA::Tn5 mutation grown in liquid and solid nutrient media at this temperature. Under similar conditions, plasmid loss was not detected in SulA+ cells. On the basis of the data obtained, it is concluded that the ts-mutation is located in the DNA-methylase gene of plasmid pRMPts. Mutant DNA methylase was unable to methylate all sites in the chromosomal DNA at 42 degrees C. Some of the unmethylated sites can be digested with the PstI enzyme, which leads to the induction of SOS response in Rec+ cells or to total mortality in cells with the recA phenotype.  相似文献   

13.
A mutation in the lon (capR) gene of Escherichia coli K-12 effects several phenotypic alterations in the mutant cell, such as overproduction of capsular polysaccharide and sensitivity to ultraviolet or ionizing radiation. A previously cloned 9.2-megadalton (Md) EcoRI fragment contained the capR+ gene and specified two polypeptides, 94 kilodaltons (K) and 67K. To provide evidence that the 94K polypeptide is the capR+ gene product, we constructed a capR+ plasmid pJMC40, having a 2.0-Md EcoRI-PstI fragment which codes only for the 94K polypeptide. Plasmids pJMC22 and pJMC30, having deletions of 0.7 and 0.8 Md, respectively, from one end of the 2.0-Md fragment, were also constructed. Each codes for a shortened stable polypeptide (from the 94K). Neither plasmid can confer the capR+ phenotype to capR mutants, confirming that the unaltered 94K polypeptide is the capR+ gene product. Plasmids pJMC51 and pJMC52 each have a deletion of 0.7 Md from the other end of the 2.0-Md fragment, differing only in the orientation of the remaining 1.3-Md fragment with respect to the cloning vehicle. They are nonfunctional with respect to capR+ and do not code for a common polypeptide from the 1.3-Md fragment. These data indicate that the fragments in pJMC22 and pJMC30, which both code for shortened 94K polypeptides, contain the promoter-operator region of the capR gene. The deletion plasmids were also used to map chromosomal capR mutations.  相似文献   

14.
In Escherichia coli, the ftsZ gene is thought to be an essential cell division gene. Several dominant mutations that make lon mutant cells refractory to the cell division inhibitor SulA, sulB9, sulB25, and sfiB114, have been mapped to the ftsZ gene. DNA sequence analysis of these mutations and the sfiB103 mutation confirmed that all of these mutations mapped within the ftsZ gene and revealed that the two sulB mutations were identical and by selection for resistance to higher levels of SulA, contained a second mutation within the ftsZ gene. We therefore propose that these mutations be redesignated ftsZ(Rsa) for resistance to SulA. A procedure involving mutagenesis of ftsZ cloned on low-copy-number vectors was used to isolate three additional ftsZ(Rsa) mutations. DNA sequence analysis of these mutations revealed that they were distinct from the previously isolated mutations. One of these mutations, ftsZ3(Rsa), led to an altered FtsZ protein that could no longer support cell growth but still conferred the Rsa phenotype in the presence of ftsZ+. In addition to being resistant to SulA, all ftsZ(Rsa) mutations also conferred resistance to a LacZ-FtsZ hybrid protein (ZZ). One possibility is that FtsZ functions as a multimer and that FtsZ(Rsa) mutant proteins have an increased ability for multimerization, making them resistant to SulA and ZZ.  相似文献   

15.
A study was made of the SOS induction of the gene sulA of Escherichia coli K12 in relation to the gene dosage of the gene recA. In experiments the sulA::lacZ fusion strain PQ37 and derivatives of PQ37 with the multi-copy plasmids pDR1453 or pBR322 were used. The SOS response was induced with nitrofurantoin, SOS induction of the gene sulA was determined on the basis of the amount of beta-galactosidase synthesized, i.e. by the SOS chromotest (Quillardet et al., 1982a). It was found in this work that cells with the plasmid pDR1453, which contain the gene recA of E. coli K12 (Sancar and Rupp, 1979), have a decreased SOS induction of the gene sulA. Cells with the plasmid pBR322 do not exhibit this decrease. Inactivation of the gene recA in the plasmid pDR1453 with preservation of the functional gene recA in the chromosome leads to a restoration of 'standard' SOS induction of the gene sulA. The results show that the amount of the gene product of the gene recA affects the SOS induction of the gene sulA.  相似文献   

16.
17.
Escherichia coli dnaK null mutants are inviable at high temperature.   总被引:41,自引:26,他引:15       下载免费PDF全文
DnaK, a major Escherichia coli heat shock protein, is homologous to major heat shock proteins (Hsp70s) of Drosophila melanogaster and humans. Null mutations of the dnaK gene, both insertions and a deletion, were constructed in vitro and substituted for dnaK+ in the E. coli genome by homologous recombination in a recB recC sbcB strain. Cells carrying these dnaK null mutations grew slowly at low temperatures (30 and 37 degrees C) and could not form colonies at a high temperature (42 degrees C); furthermore, they also formed long filaments at 42 degrees C. The shift of the mutants to a high temperature evidently resulted in a loss of cell viability rather than simply an inhibition of growth since cells that had been incubated at 42 degrees C for 2 h were no longer capable of forming colonies at 30 degrees C. The introduction of a plasmid carrying the dnaK+ gene into these mutants restored normal cell growth and cell division at 42 degrees C. These null mutants showed a high basal level of synthesis of heat shock proteins except for DnaK, which was completely absent. In addition, the synthesis of heat shock proteins after induction in these dnaK null mutants was prolonged compared with that in a dnaK+ strain. The well-characterized dnaK756 mutation causes similar phenotypes, suggesting that they are caused by a loss rather than an alteration of DnaK function. The filamentation observed when dnaK mutations were incubated at a high temperature was not suppressed by sulA or sulB mutations, which suppress SOS-induced filamentation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
An in-frame lacZ-ftsZ gene fusion under lac control was fortuitously constructed by subcloning an EcoRI fragment that contains approximately 90% of the ftsZ gene. The identity of the gene fusion was confirmed by isolating an amber mutation in the hybrid gene and then using it to reconstruct the ftsZ gene, which now contained an amber mutation. The hybrid protein (ZZ), which does not possess ftsZ activity, contains seven amino acids of lacZ at its amino terminal end, followed by 35,000 daltons of the carboxyl end of the ftsZ protein. Induction of the hybrid protein resulted in a rapid cessation of cell division which could be reversed by removing the lac inducer. This inhibition of division could be prevented by an increased gene dosage of ftsZ or the presence of the sulB allele of ftsZ, which is known to code for an altered but functional ftsZ protein. An increased gene dosage of ftsZ or the presence of the sulB allele of ftsZ is known to overcome sulA-mediated inhibition of division during the SOS response. Thus, our results suggest that ZZ is an analog of sulA and may aid in determining how sulA inhibits cell division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号