首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
Ion channels, including the epithelial Na(+) channel (ENaC), are intrinsic membrane proteins comprised of component subunits. Proper subunit assembly and stoichiometry are essential for normal physiological function of the channel protein. ENaC comprises three subunits, alpha, beta, and gamma, that have common tertiary structures and much amino acid sequence identity. For maximal ENaC activity, each subunit is required. The subunit stoichiometry of functional ENaC within the membrane remains uncertain. We combined a biophysical approach, fluorescence intensity ratio analysis, used to assess relative subunit stoichiometry with total internal reflection fluorescence microscopy, which enables isolation of plasma membrane fluorescence signals, to determine the limiting subunit stoichiometry of ENaC within the plasma membrane. Our results demonstrate that membrane ENaC contains equal numbers of each type of subunit and that at steady state, subunit stoichiometry is fixed. Moreover, we find that when all three ENaC subunits are coexpressed, heteromeric channel formation is favored over homomeric channels. Electrophysiological results testing effects of ENaC subunit dose on channel activity were consistent with total internal reflection fluorescence/fluorescence intensity ratio findings and confirmed preferential formation of heteromeric channels containing equal numbers of each subunit.  相似文献   

2.
Jose AM  Bany IA  Chase DL  Koelle MR 《Genetics》2007,175(1):93-105
Transient receptor potential (TRP) channel subunits form homotetramers that function in sensory transduction. Heteromeric channels also form, but their physiological subunit compositions and functions are largely unknown. We found a dominant-negative mutant of the C. elegans TRPV (vanilloid-type) subunit OCR-2 that apparently incorporates into and inactivates OCR-2 homomers as well as heteromers with the TRPV subunits OCR-1 and -4, resulting in a premature egg-laying defect. This defect is reproduced by knocking out all three OCR genes, but not by any single knockout. Thus a mixture of redundant heteromeric channels prevents premature egg laying. These channels, as well as the G-protein G alpha(o), function in neuroendocrine cells to promote release of neurotransmitters that block egg laying until eggs filling the uterus deform the neuroendocrine cells. The TRPV channel OSM-9, previously suggested to be an obligate heteromeric partner of OCR-2 in sensory neurons, is expressed in the neuroendocrine cells but has no detectable role in egg laying. Our results identify a specific set of heteromeric TRPV channels that redundantly regulate neuroendocrine function and show that a subunit combination that functions in sensory neurons is also present in neuroendocrine cells but has no detectable function in these cells.  相似文献   

3.
Mutations in the human ether-a-go-go-related gene (HERG) cause long QT syndrome. We previously showed that the HERG N470D mutation expressed as homotetrameric channels causes a protein trafficking defect, and this can be corrected by the HERG channel blocking drug E-4031. The N470D mutant also has been reported to cause dominant negative suppression of HERG current when coexpressed with wild-type channel subunits. The aims of this study were 1). to investigate the molecular mechanism responsible for the dominant negative effect of the N470D mutant coexpressed with wild-type subunits and 2). to test whether the trafficking defective heteromeric channels could be pharmacologically rescued by E-4031. Using a combination of immunoprecipitation and Western blot methods, we showed that N470D mutant and wild-type HERG subunits were physically associated in the endoplasmic reticulum as heteromeric channels. The coassembly resulted in the retention of both wild-type and N470D subunits in the endoplasmic reticulum. Culturing cells in E-4031 increased the cell surface expression of these channels, although with an altered electrophysiological phenotype. These results suggest that the dominant negative effect of the N470D wild-type coassembled channels is caused by retention of heteromeric channels in the endoplasmic reticulum and that the trafficking defect of these channels can be corrected by specific pharmacological strategies.  相似文献   

4.
Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels   总被引:8,自引:0,他引:8  
Zheng J  Zagotta WN 《Neuron》2004,42(3):411-421
Native ion channels are precisely tuned to their physiological role in neuronal signaling. This tuning frequently involves the controlled assembly of heteromeric channels comprising multiple types of subunits. Cyclic nucleotide-gated (CNG) channels of olfactory neurons are tetramers and require three types of subunits, CNGA2, CNGA4, and CNGB1b, to exhibit properties necessary for olfactory transduction. Using fluorescently tagged subunits and fluorescence resonance energy transfer (FRET), we find the subunit composition of heteromeric olfactory channels in the surface membrane is fixed, with 2:1:1 CNGA2:CNGA4:CNGB1b. Furthermore, when expressed individually with CNGA2, CNGA4 and CNGB1b subunits were still present in only a single copy and, when expressed alone, did not self-assemble. These results suggest that the precise assembly of heteromeric olfactory channels results from a mechanism where CNGA4 and CNGB1b subunits have a high affinity for CNGA2 but not for self-assembly, precluding more than one CNGA4 or CNGB1b subunit in the channel complex.  相似文献   

5.
Functional differences between TRPC4 splice variants.   总被引:7,自引:0,他引:7  
Functional characterizations of heterologously expressed TRPC4 have revealed diverse regulatory mechanisms and permeation properties. We aimed to clarify whether these differences result from different species and splice variants used for heterologous expression. Like the murine beta splice variant, rat and human TRPC4beta both formed receptor-regulated cation channels when expressed in HEK293 cells. In contrast, human TRPC4alpha was poorly activated by stimulation of an H(1) histamine receptor. This was not due to reduced expression or plasma membrane targeting, because fluorescent TRPC4alpha fusion proteins were correctly inserted in the plasma membrane. Furthermore, currents through both human TRPC4alpha and TRPC4beta had similar current-voltage relationships and single channel conductances. To analyze the assembly of transient receptor potential channel subunits in functional pore complexes in living cells, a fluorescence resonance energy transfer (FRET) approach was used. TRPC4alpha and TRPC4beta homomultimers exhibited robust FRET signals. Furthermore, coexpressed TRPC4alpha and TRPC4beta subunits formed heteromultimers exhibiting comparable FRET signals. To promote variable heteromultimer assemblies, TRPC4alpha/TRPC4beta were coexpressed at different molar ratios. TRPC4beta was inhibited in the presence of TRPC4alpha with a cooperativity higher than 2, indicating a dominant negative effect of TRPC4alpha subunits in heteromultimeric TRPC4 channel complexes. Finally, C-terminal truncation of human TRPC4alpha fully restored the channel activity. Thus, TRPC4beta subunits form a receptor-dependently regulated homomultimeric channel across various species, whereas TRPC4alpha contains a C-terminal autoinhibitory domain that may require additional regulatory mechanisms.  相似文献   

6.
Potassium channels play a key role in establishing the cell membrane potential and are expressed ubiquitously. Today, more than 70 mammalian K(+) channel genes are known. The diversity of K(+) channels is further increased by the fact that different K(+) channel family members may assemble to form heterotetramers. We present a method based on fluorescence microscopy to determine the subunit composition of a tetrameric K(+) channel. We generated artificial "heteromers" of the K(+) channel hK(Ca)3.1 by coexpressing two differently tagged hK(Ca)3.1 constructs containing either an extracellular hemagglutinin (HA) or an intracellular V5 epitope. hK(Ca)3.1 channel subunits were detected in the plasma membrane of MDCK-F cells or HEK293 cells by labeling the extra- and intracellular epitopes with differently colored quantum dots (QDs). As previously shown for the extracellular part of hK(Ca)3.1 channels, its intracellular domain can also bind only one QD label at a time. When both channel subunits were coexpressed, 27.5 ± 1.8% and 24.9 ± 2.1% were homotetramers consisting of HA- and V5-tagged subunits, respectively. 47.6 ± 3.2% of the channels were heteromeric and composed of both subunits. The frequency distribution of HA- and V5-tagged homo- and heteromeric hK(Ca)3.1 channels is reminiscent of the binomial distribution (a + b)(2) = a(2) + 2ab + b(2). Along these lines, our findings are consistent with the notion that hK(Ca)3.1 channels are assembled from two homomeric dimers and not randomly from four independent subunits. We anticipate that our technique will be applicable to other heteromeric membrane proteins, too.  相似文献   

7.
TRPV1 and TRPV3 are two heat-sensitive ion channels activated at distinct temperature ranges perceived by human as hot and warm, respectively. Compounds eliciting human sensations of heat or warmth can also potently activate these channels. In rodents, TRPV3 is expressed predominantly in skin keratinocytes, whereas in humans TRPV1 and TRPV3 are co-expressed in sensory neurons of dorsal root ganglia and trigeminal ganglion and are known to form heteromeric channels with distinct single channel conductances as well as sensitivities to TRPV1 activator capsaicin and inhibitor capsazepine. However, how heteromeric TRPV1/TRPV3 channels respond to heat and other stimuli remains unknown. In this study, we examined the behavior of heteromeric TRPV1/TRPV3 channels activated by heat, capsaicin, and voltage. Our results demonstrate that the heteromeric channels exhibit distinct temperature sensitivity, activation threshold, and heat-induced sensitization. Changes in gating properties apparently originate from interactions between TRPV1 and TRPV3 subunits. Our results suggest that heteromeric TRPV1/TRPV3 channels are unique heat sensors that may contribute to the fine-tuning of sensitivity to sensory inputs.  相似文献   

8.
The coassembly of homologous subunits to heteromeric complexes serves as an important mechanism in generating ion channel diversity. Here, we have studied heteromerization in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel family. Using a combination of fluorescence confocal microscopy, coimmunoprecipitation, and electrophysiology we found that upon coexpression in HEK293 cells almost all dimeric combinations of HCN channel subunits give rise to the formation of stable channel complexes in the plasma membrane. We also identified HCN1/HCN2 heteromers in mouse brain indicating that heteromeric channels exist in vivo. Surprisingly, HCN2 and HCN3 did not coassemble to heteromeric channels. This finding indicates that heteromerization requires specific structural determinants that are not present in all HCN channel combinations. Using N-glycosidase F we show that native as well as recombinant HCN channels are glycosylated resulting in a 10-20-kDa shift in the molecular weight. Tunicamycin, an inhibitor of N-linked glycosylation, blocked surface membrane expression of HCN2. Similarly, a mutant HCN2 channel in which the putative N-glycosylation site in the loop between S5 and the pore helix was replaced by glutamine (HCN2N380Q) was not inserted into the plasma membrane and did not yield detectable whole-cell currents. These results indicate that N-linked glycosylation is required for cell surface trafficking of HCN channels. Cotransfection of HCN2N380Q with HCN4, but not with HCN3, rescued cell surface expression of HCN2N380Q. Immunoprecipitation revealed that this rescue was due to the formation of a HCN2N380Q/HCN4 heteromeric channel. Taken together our results indicate that subunit heteromerization and glycosylation are important determinants of the formation of native HCN channels.  相似文献   

9.
Transient receptor potential (TRP) proteins constitute a family of cation-permeable channels that are formed by homo- or heteromeric assembly of four subunits. Despite recent progress in the identification of protein domains required for the formation of tetramers, the mechanisms governing TRP channel assembly, and biogenesis in general, remain largely elusive. In particular, little is known about the involvement of regulatory proteins in these processes. Here we report that OS-9, a ubiquitously expressed endoplasmic reticulum (ER)-associated protein, interacts with the cytosolic N-terminal tail of TRPV4. Using a combination of co-expression and knockdown approaches we have found that OS-9 impedes the release of TRPV4 from the ER and reduces its amount at the plasma membrane. Consistent with these in vitro findings, OS-9 protected zebrafish embryos against the detrimental effects of TRPV4 expression in vivo. A detailed analysis of the underlying mechanisms revealed that OS-9 preferably binds TRPV4 monomers and other ER-localized, immature variants of TRPV4 and attenuates their polyubiquitination. Thus, OS-9 regulates the secretory transport of TRPV4 and appears to protect TRPV4 subunits from the precocious ubiquitination and ER-associated degradation. Our data suggest that OS-9 functions as an auxiliary protein for TRPV4 maturation.  相似文献   

10.
There is controversy as to whether TRP channels participate in mediating store-operated current (ISOC) and store-operated Ca2+ entry (SOCE). Our recent study has demonstrated that TRPC1 forms heteromeric channels with TRPV4 in vascular endothelial cells and that Ca2+ store depletion enhances the vesicle trafficking of heteromeric TRPV4-C1 channels, causing insertion of more channels into the plasma membrane in vascular endothelial cells. In the present study, we determined whether the enhanced TRPV4-C1 insertion to the plasma membrane could contribute to SOCE and ISOC. We found that thapsigargin-induced SOCE was much lower in aortic endothelial cells derived from trpv4−/− or trpc1−/− knockout mice when compared to that of wild-type mice. In human umbilical vein endothelial cells (HUVECs), thapsigargin-induced SOCE was markedly reduced by knocking down the expression of TRPC1 and/or TRPV4 with respective siRNAs. Brefeldin A, a blocker of vesicular translocation, inhibited the SOCE. These results suggest that an enhanced vesicular trafficking of heteromeric TRPV4-C1 channels contributes to SOCE in vascular endothelial cells. Vascular tension studies suggest that such an enhanced trafficking of TRPV4-C1 channels may play a role in thapsigargin-induced vascular relaxation in rat small mesenteric arteries.  相似文献   

11.
Extracellular pH has long been known to affect the rate and magnitude of ion transport processes among others via regulation of ion channel activity. The Ca(2+)-selective transient receptor potential vanilloid 5 (TRPV5) channel constitutes the apical entry gate in Ca(2+)-transporting cells, contributing significantly to the overall Ca(2+) balance. Here, we demonstrate that extracellular pH determines the cell surface expression of TRPV5 via a unique mechanism. By a comprehensive approach using total internal reflection fluorescence microscopy, cell surface protein labeling, electrophysiology, (45)Ca(2+) uptake assays, and functional channel recovery after chemobleaching, this study shows that upon extracellular alkalinization, a pool of TRPV5-containing vesicles is rapidly recruited to the cell surface without collapsing into the plasma membrane. These vesicles contain functional TRPV5 channels since extracellular alkalinization is accompanied by increased TRPV5 activity. Conversely, upon subsequent extracellular acidification, vesicles are retrieved from the plasma membrane, simultaneously resulting in decreased TRPV5 activity. Thus, TRPV5 accesses the extracellular compartment via transient openings of vesicles, suggesting that rapid responses of constitutive active TRP channels to physiological stimuli rely on vesicular "kiss and linger" interactions with the plasma membrane.  相似文献   

12.
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry site for active Ca(2+) reabsorption in the kidney. The TRPV5 channel is a member of the TRP family of cation channels, which are composed of four subunits together forming a central pore. Regulation of channel activity is tightly controlled by the intracellular N and C termini. The TRPV5 C terminus regulates channel activity by various mechanisms, but knowledge regarding the role of the N terminus remains scarce. To study the role of the N terminus in TRPV5 regulation, we generated different N-terminal deletion constructs. We found that deletion of the first 32 residues did not affect TRPV5-mediated (45)Ca(2+) uptake, whereas deletion up to residue 34 and 75 abolished channel function. Immunocytochemistry demonstrated that these mutant channels were retained in the endoplasmic reticulum and in contrast to wild-type TRPV5 did not reach the Golgi apparatus, explaining the lack of complex glycosylation of the mutants. A limited amount of mutant channels escaped the endoplasmic reticulum and reached the plasma membrane, as shown by cell surface biotinylation. These channels did not internalize, explaining the reduced but significant amount of these mutant channels at the plasma membrane. Wild-type TRPV5 channels, despite significant plasma membrane internalization, showed higher plasma membrane levels compared with the mutant channels. The assembly into tetramers was not affected by the N-terminal deletions. Thus, the N-terminal residues 34-75 are critical in the formation of a functional TRPV5 channel because the deletion mutants were present at the plasma membrane as tetramers, but lacked channel activity.  相似文献   

13.
Shaker-related or Kv1 voltage-gated K(+) channels play critical roles in regulating the excitability of mammalian neurons. Native Kv1 channel complexes are octamers of four integral membrane alpha subunits and four cytoplasmic beta subunits, such that a tremendous diversity of channel complexes can be assembled from the array of alpha and beta subunits expressed in the brain. However, biochemical and immunohistochemical studies have demonstrated that only certain complexes predominate in the mammalian brain, suggesting that regulatory mechanisms exist that ensure plasma membrane targeting of only physiologically appropriate channel complexes. Here we show that Kv1 channels assembled as homo- or heterotetrameric complexes had distinct surface expression characteristics in both transfected mammalian cells and hippocampal neurons. Homotetrameric Kv1.1 channels were localized to endoplasmic reticulum, Kv1.4 channels to the cell surface, and Kv1.2 channels to both endoplasmic reticulum and the cell surface. Heteromeric assembly with Kv1.4 resulted in dose-dependent increases in cell surface expression of coassembled Kv1.1 and Kv1.2, while coassembly with Kv1.1 had a dominant-negative effect on Kv1.2 and Kv1.4 surface expression. Coassembly with Kv beta subunits promoted cell surface expression of each Kv1 heteromeric complex. These data suggest that subunit composition and stoichiometry determine surface expression characteristics of Kv1 channels in excitable cells.  相似文献   

14.
We previously reported that TRPV4 and TRPC1 can co-assemble to form heteromeric TRPV4-C1 channels [12]. In the present study, we characterized some basic electrophysiological properties of heteromeric TRPV4-C1 channels. 4α-Phorbol 12,13-didecanoate (4α-PDD, a TRPV4 agonist) activated a single channel current in HEK293 cells co-expressing TRPV4 and TRPC1. The activity of the channels was abrogated by a TRPC1-targeting blocking antibody T1E3. Conductance of the channels was ~95pS for outward currents and ~83pS for inward currents. The channels with similar conductance were also recorded in cells expressing TRPV4-C1 concatamers, in which assembled channels were expected to be mostly 2V4:2C1. Fluorescence Resonance Energy Transfer (FRET) experiments confirmed the formation of a protein complex with 2V4:2C1 stoichiometry while suggesting an unlikeliness of 3V4:1C1 or 1V4:3C1 stoichiometry. Monovalent cation permeability profiles were compared between heteromeric TRPV4-C1 and homomeric TRPV4 channels. For heteromeric TRPV4-C1 channels, their permeation profile was found to fit to Eisenman sequence VI, indicative of a strong field strength cation binding site, whereas for homomeric TRPV4 channels, their permeation profile corresponded to Eisenman sequence IV for a weak field strength binding site. Compared to homomeric TRPV4 channels, heteromeric TRPV4-C1 channels were slightly more permeable to Ca2+ and had a reduced sensitivity to extracellular Ca2+ inhibition. In summary, we found that, when TRPV4 and TRPC1 were co-expressed in HEK293 cells, the predominate assembly type was 2V4:2C1. The heteromeric TRPV4-C1 channels display distinct electrophysiological properties different from those of homomeric TRPV4 channels.  相似文献   

15.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.  相似文献   

16.
TRPV4 is a widely expressed member of the transient receptor potential (TRP) family that facilitates Ca(2+) entry into nonexcitable cells. TRPV4 is activated by several stimuli, but it is largely unknown how the activity of this channel is terminated. Here, we show that ubiquitination represents an important mechanism to control the presence of TRPV4 at the plasma membrane. Ubiquitination of TRPV4 is dramatically increased by the HECT (homologous to E6-AP carboxyl terminus)-family ubiquitin ligase AIP4 without inducing degradation of this channel. Instead, AIP4 promotes the endocytosis of TRPV4 and decreases its amount at the plasma membrane. Consequently, the basal activity of TRPV4 is reduced despite an overall increase in TRPV4 levels. This mode of regulation is not limited to TRPV4. TRPC4, another member of the TRP channel family, is also strongly ubiquitinated in the presence of AIP4, leading to the increased intracellular localization of TRPC4 and the reduction of its basal activity. However, ubiquitination of several other TRP channels is not affected by AIP4, demonstrating that AIP4-mediated regulation is a unique property of select TRP channels.  相似文献   

17.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.  相似文献   

18.
FRET-based analysis of TRPC subunit stoichiometry   总被引:3,自引:0,他引:3  
Amiri H  Schultz G  Schaefer M 《Cell calcium》2003,33(5-6):463-470
By analogy to other cation channel subunits with six transmembrane-spanning domains, the seven members of the "classical" or "canonical" transient receptor potential channels (TRPC) family are believed to assemble into homo- or heterotetrameric complexes. These complexes have been verified by classical methods such as coimmunoprecipitation, crosslinking analysis or functional assays applying dominant negative pore mutants. More recently, fluorescence resonance energy transfer (FRET)-a measure for the close proximity of fluorescent molecules-has become instrumental in monitoring protein assembly in living cells. Here we demonstrate further possibilities and verification procedures of the FRET technology to test the assembly of ion channel subunits. Temporally and spatially resolved FRET imaging demonstrates an early assembly of TRPC subunits in the endoplasmic reticulum and the Golgi apparatus. Confocal FRET imaging verifies FRET signals over the plasma membrane at high spatial resolution. Taking advantage of the quantitative analysis of digital video imaging, we demonstrate that FRET between TRPC subunits is only poorly concentration-dependent. Moreover, a correlation between the efficiency of energy transfer and the molar ratio of the FRET donor to the acceptor was exploited to verify the tetrameric stoichiometry of TRPC complexes. Finally, we introduce a competition-FRET assay to test the ability of wild-type TRPC subunits to recruit fluorescent TRPC subunits into separate channel complexes.  相似文献   

19.
TRPV4 (Transient Receptor Potential Vanilloid 4) channels are activated by a wide range of stimuli, including hypotonic stress, non-noxious heat and mechanical stress and some small molecule agonists (e.g. phorbol ester 4α-PDD). GSK1016790A (GSK101) is a recently discovered specific small molecule agonist of TRPV4. Its effects on physical determinants of TRPV4 activity were evaluated in HeLa cells transiently transfected with TRPV4 (HeLa-TRPV4). GSK101 (10 nM) causes a TRPV4 specific Ca(2+) influx in HeLa-TRPV4 cells, but not in control transfected cells, which can be inhibited by ruthenium red and Ca(2+)-free medium more significantly at the early stage of the activation rather than the late stage, reflecting apparent partial desensitization. Western blot analysis showed that GSK101 activation did not induce an increase in TRPV4 expression at the plasma membrane, but caused an immediate and sustained downregulation of TRPV4 on the plasma membrane in HeLa-TRPV4 cells. Patch clamp analysis also revealed an early partial desensitization of the channel which was Ca(2+)-independent. FRET analysis of TRPV4 subunit assembly demonstrated that the GSK101-induced TRPV4 channel activation/desensitization was not due to alterations in homotetrameric channel formation on the plasma membrane. It is concluded that GSK101 specifically activates TRPV4 channels, leading to a rapid partial desensitization and downregulation of the channel expression on the plasma membrane. TRPV4 subunit assembly appears to occur during trafficking from the ER/Golgi to the plasma membrane and is not altered by agonist stimulation.  相似文献   

20.
Acid-sensing ion channels (ASICs) are believed to be homo- or heteromeric complexes, which have been verified by classical methods such as co-immunoprecipitation or electrophysiological assays. However, the exact subunit combinations of ASICs in living cells have not been established yet. Here, we apply assays based on fluorescence resonance energy transfer (FRET) between GFP color mutants CFP and YFP to investigate ASIC assembly directly in living cells. Homomerization as well as heteromerization of different combinations of ASIC subunits were found. In addition, our results suggest the formation of heteromeric 1a/2a channels of stoichiometry consisting of at least two 1a subunits and two 2a subunits. Similar stoichiometry was observed from heteromeric 1a/2b and 2a/2b channels. Our results imply that these heteromeric ASIC channels contain at least four subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号