首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially neural diseases. One of the effective ways to prevent the reactive oxygen species (ROS) mediated cellular injury is dietary or pharmaceutical augmentation of free radical scavengers. In the present study, we describe the synthesis and characterization of a novel cystine C(60) derivative (CFD). The compound was analyzed by FT-IR, (1)H NMR, (13)C NMR, LC-MS and elemental analysis. It contains five cystine moieties per C(60) molecule. This water-soluble amino-fullerene derivative was able to scavenge both superoxide and hydroxyl radical with biocompatibility. We investigated its potential protective effects on hydrogen peroxide-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. Cells treated with hydrogen peroxide underwent cytotoxicity and apoptotic death determined by MTT assay, flow cytometry analysis, PI/Hoechst 33342 staining and glutathione peroxidase assay. The CFD was able to reduce the accumulation of reactive oxygen species and cellular damage caused by hydrogen peroxide in PC12 cells. RF assay demonstrated that CFD could penetrate through the cell membrane and it has played its distinguished role in protecting PC12 cells against hydrogen peroxide-induced cytotoxicity. The results suggest that CFD has the potential to prevent oxidative stress-induced cell death without evident toxicity. Hence, we can hypothesize that the protective effect of CFD on hydrogen peroxide-induced apoptosis is related to its scavenger activity.  相似文献   

2.
Jang JH  Surh YJ 《Mutation research》2001,496(1-2):181-190
Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities. One of the plausible ways to prevent the reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical augmentation of endogenous antioxidant defense capacity. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), one of the major antioxidative constituents found in the skin of grapes, has been considered to be responsible in part for the protective effects of red wine consumption against coronary heart disease ('French Pardox'). In this study, we have investigated the effects of resveratrol on hydrogen peroxide-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with hydrogen peroxide underwent apoptotic death as determined by characteristic morphological features, internucleosomal DNA fragmentation and positive in situ end-labeling by terminal transferase (TUNEL staining). Resveratrol pretreatment attenuated hydrogen peroxide-induced cytotoxicity, DNA fragmentation, and intracellular accumulation of ROS. Hydrogen peroxide transiently induced activation of NF-kappaB in PC12 cells, which was mitigated by resveratrol pretreatment. These results suggest that resveratrol has the potential to prevent oxidative stress-induced cell death.  相似文献   

3.
In the present study, we describe the synthesis and characterization of a novel folacin C60 derivative. The compound was analyzed by FT-IR, 1H NMR, 13C NMR, LC–MS and elemental analysis. This water soluble fullerene derivative was able to scavenge both superoxide and hydroxyl radical with biocompatibility. Rat pheochromocytoma (PC12) cells treated with hydrogen peroxide underwent cytotoxicity and apoptotic death determined by MTT assay and flow cytometry analysis. As a novel derivative of C60, the folacin C60 derivative self-assembled to form spherical aggregates in H2O. Because the compound was amphiphilic, it could penetrate the cell membrane and play its distinguished role in protecting PC12 cells against hydrogen peroxide-induced cytotoxicity. The results suggest that folacin C60 derivative has the potential to prevent oxidative stress-induced cell death without evident toxicity.  相似文献   

4.
There is mounting evidence implicating the accumulation of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease. Recently, considerable attention has been focused on identifying naturally occurring antioxidants that are able to reduce excess ROS and RNS, thereby protecting against oxidative stress and neuron death. The present study investigated the possible protective effects of piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), which is present in grapes and other foods, on hydrogen-peroxide- and peroxynitrite-induced oxidative cell death. PC12 rat pheochromocytoma (PC12) cells treated with hydrogen peroxide or SIN-1 (a peroxynitrite-generating compound) exhibited apoptotic death, as determined by nucleus condensation and cleavage of poly(ADP-ribose)polymerase (PARP). Piceatannol treatment attenuated hydrogen-peroxide- and peroxynitrite-induced cytotoxicity, apoptotic features, PARP cleavage and intracellular ROS and RNS accumulation. Treatment of PC12 cells with hydrogen peroxide or SIN-1 led to down-regulation of Bcl-X(L) and activation of caspase-3 and -8, which were also inhibited by piceatannol treatment. Hydrogen peroxide or SIN-1 treatment induced phosphorylation of the c-Jun-N-terminal kinase (JNK), which was inhibited by piceatannol treatment. Moreover, SP600125 (a JNK inhibitor) significantly inhibited hydrogen-peroxide- and peroxynitrite-induced PC12 cell death, revealing inactivation of the JNK pathway as a possible molecular mechanism for the protective effects of piceatannol against hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells. Collectively, these findings suggest that the protective effect of piceatannol against hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells is associated with blocking the activation of JNK and the down-regulation of Bcl-XL.  相似文献   

5.
The influence of the glutathione C60 derivative on the cytotoxicity of a highly reactive free radical NO (nitric oxide) has been investigated. Consistent with its cytoprotective abilities, the derivative scavenges ROS (reactive oxygen species) and RNS (reactive nitrogen species) both in vitro and under cell‐free conditions. Moreover, the glutathione C60 derivative protected PC12 cells from the cytotoxic effect of the NO‐releasing compound, SNP (sodium nitroprusside). Addition of glutathione C60 derivative alone did not induce apoptosis and necrosis. The results suggest that the glutathione C60 derivative has the potential to prevent NO‐mediated cell death without evident toxicity.  相似文献   

6.
Although neurotrophins protect PC12 cells and neurons from oxidative stress-induced death, the molecular mechanism of this effect is largely unknown. Xanthine (XA)+xanthine oxidase (XO) increased the production of the superoxide anion (O2-) and hydrogen peroxide (H2O2), and the death of PC12 cells. Catalase but not superoxide dismutase (SOD) nor a NO scavenger protected PC12 cells from death, indicating that H2O2 is the main effector responsible for this cell death. Both nerve growth factor (NGF) and Bcl-2 protected PC12 cells from O2--induced toxicity. NGF enhanced the production of O2- and suppressed that of H2O2, suggesting that it inhibits the conversion of O2- to H2O2, while Bcl-2 had no such effect. These results suggested that NGF protected the cells from oxidative stress by altering the composition of the reactive oxygen species (ROS) without affecting their total level.  相似文献   

7.
《Free radical research》2013,47(6-7):488-497
Abstract

Reactive oxygen species (ROS) are known to be involved in many neurodegenerative diseases. This study assessed the effect of Claulansine F, a new carbazole isolated from Clausena lansium, on sodium nitroprusside (SNP)-treated rat pheochromocytoma PC12 cells. First, it was found that Claulansine F showed more potential on inhibiting the programmed death of PC12 cells than edaravone by cell viability, morphologic observation, and flow cytometric analysis. Further results also showed that Claulansine F attenuated the production of total intracellular ROS formation and lipid peroxidation in PC12 cells, inhibited the mitochondrial membrane potential (MMP) loss, and prevented the programmed cell death event via the P53/Bcl-2 family pathway. Its protective effect was likely medicated by the hydroxyl radical (·OH) scavenging ability, as it appeared to be not involved in the natural antioxidant system. These results suggested a promising potential for Claulansine F as a ROS scavenger in pathologies, where an oxidative stress is involved.  相似文献   

8.
Enhanced oxidative stress is implicated in the pathogenesis of Parkinson's disease. The catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS), leading to neuronal cell death. On the other hand, apomorphine, a dopamine D1/D2 receptor agonist and known as a potent antioxidant, has been reported to have a neuroprotective effect. In the present study, we investigated the effect of apomorphine on 6-OHDA-induced apoptotic cell death using the human dopaminergic neuroblastoma cell line, SH-SY5Y. The co-treatment of cells with apomorphine significantly attenuated 6-OHDA-induced ROS generation, the phosphorylation of c-Jun N-terminal kinase (JNK), DNA fragmentation and subsequent apoptotic cell death. In addition, pretreatment with apomorphine for 24 h and the following concomitant treatment enhanced the protective effects against 6-OHDA-induced toxicity except for the attenuation of JNK phosphorylation. We also demonstrated that pretreatment alone with apomorphine for 24 h prior to the exposure confers resistance against 6-OHDA-induced cell toxicity. These findings suggested that apomorphine acts principally as a radical scavenger to suppress the level of ROS and ROS-stimulated apoptotic signaling pathway, whereas the other mechanisms might be involved in the protective effects.  相似文献   

9.
《Free radical research》2013,47(12):1240-1247
The biological activities of C60-bis(N,N-dimethylpyrrolidinium iodide), a water-soluble cationic fullerene derivative, on human promyeloleukaemia (HL-60) cells were investigated. The pyrrolidinium fullerene derivative showed cytotoxicity in HL-60 cells. The characteristics of apoptosis, such as DNA fragmentation and condensation of chromatin in HL-60 cells, were observed by exposure to the pyrrolidinium fullerene derivative. Caspase-3 and -8 were activated and cytochrome c was also released from mitochondria. The generation of reactive oxygen species (ROS) by the pyrrolidinium fullerene derivative was observed by DCFH-DA, a fluorescence probe for the detection of ROS. Pre-treatment with α-tocopherol suppressed cell death and intracellular oxidative stress caused by the pyrrolidinium fullerene derivative. The apoptotic cell death induced by the pyrrolidinium fullerene derivative was suggested to be mediated by ROS generated by the pyrrolidinium fullerene derivative.  相似文献   

10.
Abstract

Enhanced oxidative stress is implicated in the pathogenesis of Parkinson's disease. The catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS), leading to neuronal cell death. On the other hand, apomorphine, a dopamine D1/D2 receptor agonist and known as a potent antioxidant, has been reported to have a neuroprotective effect. In the present study, we investigated the effect of apomorphine on 6-OHDA-induced apoptotic cell death using the human dopaminergic neuroblastoma cell line, SH-SY5Y. The co-treatment of cells with apomorphine significantly attenuated 6-OHDA-induced ROS generation, the phosphorylation of c-Jun N-terminal kinase (JNK), DNA fragmentation and subsequent apoptotic cell death. In addition, pretreatment with apomorphine for 24 h and the following concomitant treatment enhanced the protective effects against 6-OHDA-induced toxicity except for the attenuation of JNK phosphorylation. We also demonstrated that pretreatment alone with apomorphine for 24 h prior to the exposure confers resistance against 6-OHDA-induced cell toxicity. These findings suggested that apomorphine acts principally as a radical scavenger to suppress the level of ROS and ROS-stimulated apoptotic signaling pathway, whereas the other mechanisms might be involved in the protective effects.  相似文献   

11.
AIM To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells.METHODS Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine(a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. RESULTS Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species(ROS), especially under pathological conditions. High levels of ROS are known to induce injuries in cell structure as they interact at many levels in cell function. In C2C12 cells, a treatment with menadione induced a loss of transmembrane mitochondrial potential, an increase in mitochondrial production of ROS; it also induces autophagy and was able to provoke cell death. Pre-treatment of the cells with L-carnitine reduced ROS production, diminished autophagy and protected C2C12 cells against menadione-induced deleterious effects. CONCLUSION In conclusion, L-carnitine limits the oxidative stress in these cells and prevents cell death.  相似文献   

12.
Fan S  Li L  Chen S  Yu Y  Qi M  Tashiro S  Onodera S  Ikejima T 《Free radical research》2011,45(11-12):1307-1324
Silibinin, as the major active constituent of silymarin, has its various biological effects. Here, we investigated the inhibitory effects of silibinin on HeLa cell growth in relation to autophagy and apoptosis induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. Silibinin dose and time-dependently decreased cell growth cultured in medium containing 10% fetal bovine serum or in serum free media (SFM) with an IC(50) of approximately 80-100 and 40-60 μM at 24 h, respectively. Silibinin induced autophagy at 12 h, confirmed by monodansylcadervarine (MDC) staining and up-regulation of beclin-1, and induced apoptosis at 24 h, detected by observation of apoptotic bodies and activation of caspase-3. 3-methyladenine (3-MA) inhibited silibinin-induced autophagy and attenuated the silibinin's inhibitory effect on cell viability, suggesting that autophagy enhanced silibinin-induced cell death. Silibinin increased ROS levels at 12 h, and ROS scavenger, N-acetylcysteine (NAC), significantly reversed the cytotoxicity of silibinin through inhibiting both autophagy and apoptosis. Specific antioxidants were applied and results indicated that hydroxyl radical (·OH) was the major ROS induced by silibinin, and OH scavenger glutathione (GSH) inhibited apoptosis and autophagy. Silibinin also generated RNS production in the cells at 12 h. High concentration of N omega-nitro-l-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor attenuated the cytotoxicity of silibinin by decreasing ROS levels, leading to down-regulation of apoptosis. Silibinin also could interrupt the respiring functions of mitochondria, leading to ROS production and oxidative damage.  相似文献   

13.
Oxidized low-density lipoprotein (ox-LDL) incorporation into intimally resident vascular cells via scavenger receptors marks one of the early steps in atherosclerosis. Cellular apoptotic damage results from two major serial intracellular events: the binding and scavenger receptor-mediated uptake of oxidizable lipoproteins and the intracellular oxidative responses of accumulated lipoproteins. Most molecular approaches to prevent apoptotic damage have focused on singular events within the cascade of lipoprotein trafficking. To identify a multifocal strategy against LDL-induced apoptosis, we evaluated the role of cellular preconditioning by glutathione-ethyl ester (GSH-Et), a native redox regulator, in the prevention of the uptake and apoptotic effects of an oxidizable scavenger receptor-specific ligand, acetylated low-density lipoprotein (Ac-LDL). Our results indicate that GSH-Et-mediated protein kinase C (PKC) pathway modulation regulates Ac-LDL binding and incorporation into GSH-Et preconditioned cells and subsequently delays reactive oxygen intermediate generation and apoptotic conversion. The GSH-Et protective effects on apoptosis and Ac-LDL binding were reversed by calphostin C, a PKC inhibitor, and were accompanied by an increase in PKC phosphorylation. However, the rate of reactive oxygen intermediate accumulation was not increased following calphostin C treatment, suggesting that GSH-Et may play an important nonreactive oxygen-intermediate-based protective role in regulating apoptotic dynamics. Overall, we report on the novel role for GSH-Et preconditioning as a molecular strategy to limit lipoprotein entry into the cells, which presents a proactive modality to prevent cellular apoptosis in contrast with the prevalent antioxidant approaches that treat damage retroactively.  相似文献   

14.
Monochloramine (NH(2)Cl) is a physiological oxidant produced by activated neutrophils. In the present work, we studied the underlying mechanism of cytotoxic effects of NH(2)Cl on an undifferentiated rat pheochromocytoma PC12 cell line and the protective effects of antioxidants. The cells treated with 100 microM NH(2)Cl exhibited signs of apoptotic cell death such as phosphatidylserine exposure and caspase activation. To understand the mechanism of NH(2)Cl cytotoxicity, we examined the effect of various kinds of antioxidants including alpha-tocopherol (alpha-Toc) and beta-tocopherol (beta-Toc). These antioxidants exerted a protective effect against NH(2)Cl-induced cell death, and alpha-Toc exhibited the most potent inhibitory effect among the antioxidants used. A loss of cellular glutathione was observed in the cells treated with 100 microM NH(2)Cl. The formation of reactive oxygen species (ROS) was also measured using the fluorescent probe dichlorofluorescin diacetate. The fluorescence intensity increased prior to cell death and an antioxidant, such as alpha-Toc, suppressed the increase in ROS. Interestingly, beta-Toc also exerted similar inhibitory effects on cytotoxicity and caspase activation. These results suggest that free radical mediated process is involved in NH(2)Cl-induced PC12 cell death and that tocopherols inhibit this cell death via antioxidative function.  相似文献   

15.
Silibinin mostly has been used as hepatoprotectants, but it has other interesting activities, e.g. anti-cancer, cardial protective and brain-protective activities. A previous study demonstrated that silibinin protected amyloid β (Aβ)-induced mouse cognitive disorder by behavioural pharmacological observation. This study assessed the effect of silibinin on sodium nitroprusside (SNP)-treated rat pheochromocytoma PC12 cells. Subsequent morphologic observation, flow cytometric analysis and Western blot analysis indicated that treatment with SNP significantly induced apoptosis in PC12 cells. However, silibinin eliminated the apoptotic effect by reactive oxygen species (ROS) generation, especially hydroxyl free radical. Silibinin-induced autophagy through ROS generation when exerting a protective effect and silibinin-induced autophagy also enhanced the ROS generation since 3-methyladenine (3-MA), a specific autophagy inhibitor, decreased the ROS generation and rapamycin, an autophagy inducer, enhanced the ROS generation. Therefore, there exists a positive feedback loop between autophagy and ROS generation. Autophagy prevented SNP-induced apoptosis, since the addition of 3-MA significantly eliminated the protective effect of silibinin. This protective effect was attributed to the generation of ROS and its two downstream Ras/PI3K/NF-κB and Ras/Raf/MEK/ERK pathways. Both prevented PC12 cells from apoptosis. The PI3K/NF-κB pathway induced autophagy to protect PC12 cells, but the Raf/MEK/ERK pathway directly protected PC12 cells bypassing the autophagic effect.  相似文献   

16.
《Free radical research》2013,47(7):835-847
Abstract

Silibinin mostly has been used as hepatoprotectants, but it has other interesting activities, e.g. anti-cancer, cardial protective and brain-protective activities. A previous study demonstrated that silibinin protected amyloid β (Aβ)-induced mouse cognitive disorder by behavioural pharmacological observation. This study assessed the effect of silibinin on sodium nitroprusside (SNP)-treated rat pheochromocytoma PC12 cells. Subsequent morphologic observation, flow cytometric analysis and Western blot analysis indicated that treatment with SNP significantly induced apoptosis in PC12 cells. However, silibinin eliminated the apoptotic effect by reactive oxygen species (ROS) generation, especially hydroxyl free radical. Silibinin-induced autophagy through ROS generation when exerting a protective effect and silibinin-induced autophagy also enhanced the ROS generation since 3-methyladenine (3-MA), a specific autophagy inhibitor, decreased the ROS generation and rapamycin, an autophagy inducer, enhanced the ROS generation. Therefore, there exists a positive feedback loop between autophagy and ROS generation. Autophagy prevented SNP-induced apoptosis, since the addition of 3-MA significantly eliminated the protective effect of silibinin. This protective effect was attributed to the generation of ROS and its two downstream Ras/PI3K/NF-κB and Ras/Raf/MEK/ERK pathways. Both prevented PC12 cells from apoptosis. The PI3K/NF-κB pathway induced autophagy to protect PC12 cells, but the Raf/MEK/ERK pathway directly protected PC12 cells bypassing the autophagic effect.  相似文献   

17.
《Free radical research》2013,47(11-12):1307-1324
Abstract

Silibinin, as the major active constituent of silymarin, has its various biological effects. Here, we investigated the inhibitory effects of silibinin on HeLa cell growth in relation to autophagy and apoptosis induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. Silibinin dose and time-dependently decreased cell growth cultured in medium containing 10% fetal bovine serum or in serum free media (SFM) with an IC50 of approximately 80–100 and 40–60 μM at 24 h, respectively. Silibinin induced autophagy at 12 h, confirmed by monodansylcadervarine (MDC) staining and up-regulation of beclin-1, and induced apoptosis at 24 h, detected by observation of apoptotic bodies and activation of caspase-3. 3-methyladenine (3-MA) inhibited silibinin-induced autophagy and attenuated the silibinin's inhibitory effect on cell viability, suggesting that autophagy enhanced silibinin-induced cell death. Silibinin increased ROS levels at 12 h, and ROS scavenger, N-acetylcysteine (NAC), significantly reversed the cytotoxicity of silibinin through inhibiting both autophagy and apoptosis. Specific antioxidants were applied and results indicated that hydroxyl radical (·OH) was the major ROS induced by silibinin, and OH scavenger glutathione (GSH) inhibited apoptosis and autophagy. Silibinin also generated RNS production in the cells at 12 h. High concentration of N omega-nitro-l-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor attenuated the cytotoxicity of silibinin by decreasing ROS levels, leading to down-regulation of apoptosis. Silibinin also could interrupt the respiring functions of mitochondria, leading to ROS production and oxidative damage.  相似文献   

18.
beta-Amyloid protein (Abeta), a major protein component of brain senile plaques in Alzheimer's disease, is known to be directly responsible for the production of reactive oxygen species (ROS) and induction of apoptosis. In this study, the protective effect of puerarin, an isoflavone purified from the radix of the Chinese herb Pueraria lobata, on Abeta-induced rat pheochromocytoma (PC12) cultures was investigated. Although exposure of PC12 cells to 50 microM Abeta25-35 caused significant viability loss and apoptotic rate increase, pretreatment of the cells with puerarin for 24h reduced the viability loss and apoptotic rate. Puerarin (1 microM) significantly inhibited Abeta25-35-induced apoptosis of PC12 cells. Preincubation of the cell with puerarin also restored the ROS and mitochondrial membrane potential levels that had been altered as a result of Abeta25-35 treatment. Puerarin was also found to increase the Bcl-2/Bax ratio and reduce caspase-3 activation. These results suggest that puerarin could attenuate Abeta25-35-induced PC12 cell injure and apoptosis and could also promote the survival of PC12 cells. Therefore, puerarin may act as an intracellular ROS scavenger, and its antioxidant properties may protect against Abeta25-35-induced cell injury.  相似文献   

19.
Amyloid beta protein (Abeta) increases free radical production and lipid peroxidation in PC12 nerve cells, leading to apoptosis and cell death. The effect of ursolic acid from Origanum majorana L. on Abeta-induced neurotoxicity was investigated using PC12 cells. Pretreatment with isolated ursolic acid and vitamin E prevented the PC12 cell from reactive oxygen species (ROS) toxicity that is mediated by Abeta. The ursolic acid resulted in decreased Abeta toxicity assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and trypan blue assay. Thus, treatment with these antioxidants inhibited the Abeta-induced neurotoxic effect. Therefore, these results indicate that micromolar Abeta-induced oxidative cell death is reduced by ursolic acid from Origanum majorana L.  相似文献   

20.
Melatonin is an indoleamine secreted by the pineal gland that shows multiple tasks. This ubiquitously acting free radical scavenger has recently been shown to stimulate the production of reactive oxygen species (ROS) in tumour cells, making them undergo apoptosis, whilst it prevents apoptosis in healthy cells. The mechanisms by which melatonin exerts these dual actions are, however, not yet clearly understood. Thus, the aim of this study was to further investigate how melatonin can enhance oxidative stress-induced apoptosis in a leukaemia cell line. The results show that melatonin increased the apoptotic effects of H(2)O(2) in human myeloid HL-60 cells as assessed by cellular viability, mitochondrial permeability transition induction, mitochondrial membrane depolarization, ROS generation, caspases 3, 8 and 9 activity, phosphatidylserine externalization, and DNA fragmentation techniques. When healthy leucocytes were exposed to H(2)O(2), melatonin increased the viability of the cells. Taken together, the findings indicate that melatonin is a potential physiological tool capable of protecting healthy cells from chemotherapy-induced ROS production as well as inducing tumour cell death. Because cancer cells manifest increased oxidative stress as a result of their elevated metabolism, the use of melatonin may be useful in impairing their ROS buffering capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号