首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of activation of the NAD-malic enzyme from Ascaris suum by fumarate has been probed using initial velocity studies, deuterium isotope effects, and isotope partitioning of the E:Mg:malate complex. Fumarate exerts its activating effect by decreasing the off-rate for malate from the E:Mg:malate and E:NAD:Mg:malate complexes. Fumarate is a positive heterotropic effector of the NAD-malic enzyme at low concentrations (K act approximately 0.05 mM) and an inhibitor competitive against malate (Ki approximately 25 mM). The activation by fumarate results in a decrease in the Ki malate and an increase in V/K malate of about 2-fold, while the maximum velocity remains constant. Isotope partitioning studies of E:Mg:[14C]malate indicate that the presence of fumarate results in a decrease in the malate off-rate constant by about 2.2-fold. The deuterium isotope effects on V and V/K malate are both 1.6 +/- 0.1 in the absence of fumarate, while in the presence of 0.5 mM fumarate DV is 1.6 +/- 0.1 and D(V/K malate) is 1.1 +/- 0.1. These data are also consistent with a decrease in the off-rate for malate from E:NAD:Mg:malate, resulting in an increase in the forward commitment factor for malate and manifested as a lower value for D(V/K malate). There is a discrimination between active and activator sites for the binding of dicarboxylic acids, with the activator site preferring the extended configuration of 4-carbon dicarboxylic acids, while the active site prefers a configuration in which the 4-carboxyl is twisted out of the C1-C3 plane. The physiologic importance and regulatory properties of fumarate in the parasite are also discussed.  相似文献   

2.
S H Park  B G Harris  P F Cook 《Biochemistry》1989,28(15):6334-6340
Substrate activation of the rate of the NAD-malic enzyme reaction by malate is obtained in the presence but not in the absence of oxalate. The substrate activation is a result of competition between malate and oxalate for the E.NADH complex, with malate binding to the form of the complex unprotonated at an enzyme group with a pK of 4.9 and oxalate binding preferentially to the protonated form. The off-rate for NADH from the E.NADH complex is completely rate limiting when the group with a pK of 4.9 is protonated but is only one of several rate-limiting steps when it is unprotonated [Kiick, D.M., Harris, B.G., & Cook, P.F. (1986) Biochemistry 25, 227]. The competition by malate with oxalate thus results in an overall increase in the off-rate for NADH as a result of binding to the unprotonated form of E.NADH. Consistent with the proposed mechanism, the deuterium isotope effect on V for the nonsubstrate-activating malate concentration range decreases from 1.6 in the absence of oxalate to 1.3 in the presence of a concentration of oxalate equal to its Kii. The rate equation for the oxalate-induced substrate activation by malate is derived and presented in the Appendix. Data are discussed in terms of the overall mechanism of the NAD-malic enzyme.  相似文献   

3.
Karsten WE  Cook PF 《Biochemistry》2007,46(50):14578-14588
The NAD-malic enzyme catalyzes the oxidative decarboxylation of l-malate. Structures of the enzyme indicate that arginine 181 (R181) is within hydrogen bonding distance of the 1-carboxylate of malate in the active site of the enzyme and interacts with the carboxamide side chain of the nicotinamide ring of NADH, but not with NAD+. Data suggested R181 might play a central role in binding and catalysis in malic enzyme, and it was thus changed to lysine and glutamine to probe its potential function. A nearly 100-fold increase in the Km for malate and a 30-fold increase in the Ki for oxalate, an analogue of the enolpyruvate intermediate, in the R181Q and R181K mutants are consistent with a role for R181 in binding substrates. The mutant enzymes also exhibit a >10-fold increase in KiNADH, but only a slight or no change in KNAD, consistent with rotation of the nicotinamide ring into the malate binding site upon reduction of NAD+ to NADH. The activity of the R181Q mutant can be rescued by ammonium ion likely by binding in the pocket vacated by the guanidinium group of R181. Results suggest 2 mol of ammonia bind per mole of active sites with a high-affinity KNH4 of 0.7 +/- 0.1 mM and a low-affinity KNH4 of approximately 420 mM. Occupancy of the high-affinity site, likely by NH4+, results in an increase in the affinity of malate, oxalate, and NADH (with no change in NAD affinity), consistent with the above-proposed roles for R181. The second molecule to bind is likely neutral NH3, and its binding increases V/Et approximately 20-fold. Primary deuterium and 13C isotope effects measured in the absence and presence of ammonium ion suggest R181Q predominantly affects the rate of the reaction by changing the rate of the precatalytic conformational change. The isotope effects do not change upon binding the second mole of ammonia in spite of the 20-fold increase in V/Et. Thus, the R181Q mutant enzyme exists as an equilibrium mixture between active and less active forms, and NH3 stabilizes the more active conformation of the enzyme.  相似文献   

4.
Karsten WE  Liu D  Rao GS  Harris BG  Cook PF 《Biochemistry》2005,44(9):3626-3635
The pH dependence of kinetic parameters of several active site mutants of the Ascaris suum NAD-malic enzyme was investigated to determine the role of amino acid residues likely involved in catalysis on the basis of three-dimensional structures of malic enzyme. Lysine 199 is positioned to act as the general base that accepts a proton from the 2-hydroxyl of malate during the hydride transfer step. The pH dependence of V/K(malate) for the K199R mutant enzyme reveals a pK of 5.3 for an enzymatic group required to be unprotonated for activity and a second pK of 6.3 that leads to a 10-fold loss in activity above the pK of 6.3 to a new constant value up to pH 10. The V profile for K199R is pH independent from pH 5.5 to pH 10 and decreases below a pK of 4.9. Tyrosine 126 is positioned to act as the general acid that donates a proton to the enolpyruvate intermediate to form pyruvate. The pH dependence of V/K(malate) for the Y126F mutant is qualitatively similar to K199R, with a requirement for a group to be unprotonated for activity with a pK of 5.6 and a partial activity loss of about 3-fold above a pK of 6.7 to a new constant value. The Y126F mutant enzyme is about 60000-fold less active than the wild-type enzyme. In contrast to K199R, the V rate profile for Y126F also shows a partial activity loss above pH 6.6. The wild-type pH profiles were reinvestigated in light of the discovery of the partial activity change for the mutant enzymes. The wild-type V/K(malate) pH-rate profile exhibits the requirement for a group to be unprotonated for catalysis with a pK of 5.6 and also shows the partial activity loss above a pK of 6.4. The wild-type V pH-rate profile decreases below a pK of 5.2 and is pH independent from pH 5.5 to pH 10. Aspartate 294 is within hydrogen-bonding distance to K199 in the open and closed forms of malic enzyme. D294A is about 13000-fold less active than the wild-type enzyme, and the pH-rate profile for V/K(malate) indicates the mutant is only active above pH 9. The data suggest that the pK present at about pH 5.6 in all of the pH profiles represents D294, and during catalysis D294 accepts a proton from K199 to allow K199 to act as a general base in the reaction. The pK for the general acid in the reaction is not observed, consistent with rapid tautomerization of enolpyruvate. No other ionizable group in the active site is likely responsible for the partial activity change observed in the pH profiles, and thus the group responsible is probably remote from the active site and the effect on activity is transmitted through the protein by a conformational change.  相似文献   

5.
Liu D  Karsten WE  Cook PF 《Biochemistry》2000,39(39):11955-11960
Site-directed mutagenesis was used to change K199 in the Ascaris suum NAD-malic enzyme to A and R and Y126 to F. The K199A mutant enzyme gives a 10(5)-fold decrease in V and a 10(6)-fold decrease in V/K(malate) compared to the WT enzyme. In addition, the ratio for partitioning of the oxalacetate intermediate toward pyruvate and malate changes from a value of 0.4 for the WT enzyme to 1.6 for K199A, and repeating the experiment with A-side NADD gives isotope effects of 3 and 1 for the WT and K199A mutant enzymes, respectively. The K199R mutant enzyme gives only a factor of 10 decrease in V, and the pK for the general acid in this mutant enzyme has increased from 9 for the WT enzyme to >10 for the K199R mutant enzyme. Tritium exchange from solvent into pyruvate is catalyzed by the WT enzyme, but not by the K199A mutant enzyme. The Y126F mutant enzyme gives a 10(3)-fold decrease in V. The oxalacetate partition ratio and isotope effect on oxalacetate reduction for the Y126F mutant enzyme are identical, within error, to those measured for the WT enzyme. Thus, Y126 is important to the overall reaction, but its role at present is unclear. Data are consistent with K199 functioning as the general acid that protonates C3 of enolpyruvate to generate the pyruvate product in the malic enzyme reaction.  相似文献   

6.
Liu D  Hwang CC  Cook PF 《Biochemistry》2002,41(40):12200-12203
The NAD-malic enzyme from Ascaris suum will utilize L-aspartate, (2S,3R)-tartrate, and meso-tartrate as substrates with V/K values 10(-4)-10(-5) with respect to malate. There is a strict requirement for the 2S stereochemistry for all of these reactants. Since aspartate is unique as an amino acid reactant for malic enzyme, it was informative to determine the details of its mechanism of oxidative decarboxylation. The initial rate of NADH appearance is directly proportional to the concentration of aspartate, and saturation is difficult to achieve. The pH dependence of V/K(aspartate)E(t) shows a decrease at low pH, giving a pK of 5.7. The pH-independent value of V/K(aspartate)E(t) is 3 M(-1) s(-1), 12500-fold lower than that obtained with L-malate. The dissociation constant for aspartate as a competitive inhibitor of malate is 60 mM at neutral pH, allowing an estimate of about 0.18 s(-1) for V/E(t) with L-aspartate compared to a value of 39 s(-1) obtained with L-malate. The deuterium isotope effect on V/K(aspartate) is pH independent over the range 5.1-6.9 with an average value of 3.3. Data suggest that the monoanion of L-aspartate binds to enzyme and that the same general base, general acid mechanism that is responsible for the oxidative decarboxylation of malate to pyruvate applies to the oxidative decarboxylation of aspartate to iminopyruvate. In addition, the oxidation step appears to be largely rate determining with aspartate as the substrate.  相似文献   

7.
Karsten WE  Pais JE  Rao GS  Harris BG  Cook PF 《Biochemistry》2003,42(32):9712-9721
The kinetic mechanism of activation of the mitochondrial NAD-malic enzyme from the parasitic roundworm Ascaris suum has been studied using a steady-state kinetic approach. The following conclusions are suggested. First, malate and fumarate increase the activity of the enzyme in both reaction directions as a result of binding to separate allosteric sites, i.e., sites that exist in addition to the active site. The binding of malate and fumarate is synergistic with the K(act) decreasing by >or=10-fold at saturating concentrations of the other activator. Second, the presence of the activators decreases the K(m) for pyruvate 3-4-fold, and the K(i) (Mn) >or=20-fold in the direction of reductive carboxylation; similar effects are obtained with fumarate in the direction of oxidative decarboxylation. The greatest effect of the activators is thus expressed at low reactant concentrations, i.e., physiologic concentrations of reactant, where activation of >or=15-fold is observed. A recent crystallographic structure of the human mitochondrial NAD malic enzyme [13] shows fumarate bound to an allosteric site. Site-directed mutagenesis was used to change R105, homologous to R91 in the fumarate activator site of the human enzyme, to alanine. The R105A mutant enzyme exhibits the same maximum rate and V/K(NAD) as does the wild-type enzyme, but 7-8-fold decrease in both V/K(malate) and V/K(Mg), indicating the importance of this residue in the activator site. In addition, neither fumarate nor malate activates the enzyme in either reaction direction. Finally, a change in K143 (a residue in a positive pocket adjacent to that which contains R105), to alanine results in an increase in the K(act) for malate by about an order of magnitude such that it is now of the same magnitude as the K(m) for malate. The K143A mutant enzyme also exhibits an increase in the K(act) for fumarate (in the absence of malate) from 200 microM to about 25 mM.  相似文献   

8.
Aktas DF  Cook PF 《Biochemistry》2008,47(8):2539-2546
The mitochondrial NAD-malic enzyme catalyzes the oxidative decarboxylation of malate to pyruvate and CO2. The role of the dinucleotide substrate in oxidative decarboxylation is probed in this study using site-directed mutagenesis to change key residues that line the dinucleotide binding site. Mutant enzymes were characterized using initial rate kinetics, and isotope effects were used to obtain information on the contribution of these residues to binding energy and catalysis. Results obtained for the N479 mutant enzymes indicate that the hydrogen bond donated by N479 to the carboxamide side chain of the nicotinamide ring is important for proper orientation in the hydride transfer step. The stepwise oxidative decarboxylation mechanism observed for the wt enzyme changed to a concerted one, which is totally rate limiting, for the N479Q mutant enzyme. In this case, it is likely that the longer glutamine side chain causes reorientation of malate such that it binds in a conformation that is optimal for concerted oxidative decarboxylation. Converting N479 to the shorter serine side chain gives very similar values of KNAD, Kmalate, and isotope effects relative to wt, but V/Et is decreased 2 000-fold. Data suggest an increased freedom of rotation, resulting in nonproductively bound cofactor. Changes were also made to two residues, S433 and N434, which interact with the nicotinamide ribose of NAD. In addition, N434 donates a hydrogen bond to the beta-carboxylate of malate. The KNAD for the S433A mutant enzyme increased by 80-fold, indicating that this residue provides significant binding affinity for the dinucleotide. With N434A, the interaction of the residue with malate is lost, causing the malate to reorient itself, leading to a slower decarboxylation step. The longer glutamine and methionine side chains stick into the active site and cause a change in the position of malate and/or NAD resulting in more than a 104-fold decrease in V/Et for these mutant enzymes. Overall, data indicate that subtle changes in the orientation of the cofactor and substrate dramatically influence the reaction rate.  相似文献   

9.
Effects of adenylates on the activity of mitochondrial NAD-malic enzyme from NAD-malic-enzyme (NAD-ME)-type and phosphoenolpyruvate-carboxykinase-(PKC)-type C4 plants are examined. At physiological concentrations, ATP, ADP, and AMP all inhibit the enzyme from Atriplex spongiosa and Panicum miliaceum (NAD-ME-type plants), with ATP the most inhibitory species. The degree of inhibition is greater with subsaturating levels of activator, malate, and Mn2+. NAD-malic enzyme from Urochloa panicoides (PCK-type) is activated by ATP (up to 10-fold) and inhibited by ADP and AMP. These effects are discussed in relation to regulation of C4 photosynthesis.  相似文献   

10.
S R Gavva  B G Harris  P M Weiss  P F Cook 《Biochemistry》1991,30(23):5764-5769
A thiol group at the malate-binding site of the NAD-malic enzyme from Ascaris suum has been modified to thiocyanate. The modified enzyme generally exhibits slight increases in KNAD and Ki metal and decreases in Vmax as the metal size increases from Mg2+ to Mn2+ to Cd2+, indicative of crowding in the site. The Kmalate value increases 10- to 30-fold, suggesting that malate does not bind optimally to the modified enzyme. Deuterium isotope effects on V and V/Kmalate increase with all three metal ions compared to the native enzyme concomitant with a decrease in the 13C isotope effect, suggesting a switch in the rate limitation of the hydride transfer and decarboxylation steps with hydride transfer becoming more rate limiting. The 13C effect decreases only slightly when obtained with deuterated malate, suggestive of the presence of a secondary 13C effect in the hydride transfer step, similar to data obtained with non-nicotinamide-containing dinucleotide substrates for the native enzyme (see the preceding paper in this issue). The native enzyme is inactivated in a time-dependent manner by Cd2+. This inactivation occurs whether the enzyme alone is present or whether the enzyme is turning over with Cd2+ as the divalent metal activator. Upon inactivation, only Cd2+ ions are bound at high stoichiometry to the enzyme, which eventually becomes denatured. Conversion of the active-site thiol to thiocyanate makes it more difficult to inactivate the enzyme by treatment with Cd2+.  相似文献   

11.
Ascaris suum mitochondrial malic enzyme catalyzes the divalent metal ion dependent conversion of l-malate to pyruvate and CO(2), with concomitant reduction of NAD(P) to NAD(P)H. In this study, some of the residues that form the adenosine binding site of NAD were mutated to determine their role in binding of the cofactor and/or catalysis. D361, which is completely conserved among species, is located in the dinucleotide-binding Rossmann fold and makes a salt bridge with R370, which is also highly conserved. D361 was mutated to E, A and N. R370 was mutated to K and A. D361E and A mutant enzymes were inactive, likely a result of the increase in the volume in the case of the D361E mutant enzyme that caused clashes with the surrounding residues, and loss of the ionic interaction between D361 and R370, for D361A. Although the K(m) for the substrates and isotope effect values did not show significant changes for the D361N mutant enzyme, V/E(t) decreased by 1400-fold. Data suggested the nonproductive binding of the cofactor, giving a low fraction of active enzyme. The R370K mutant enzyme did not show any significant changes in the kinetic parameters, while the R370A mutant enzyme gave a slight change in V/E(t), contrary to expectations. Overall, results suggest that the salt bridge between D361 and R370 is important for maintaining the productive conformation of the NAD binding site. Mutation of residues involved leads to nonproductive binding of NAD. The interaction stabilizes one of the Rossmann fold loops that NAD binds. Mutation of H377 to lysine, which is conserved in NADP-specific malic enzymes and proposed to be a cofactor specificity determinant, did not cause a shift in cofactor specificity of the Ascaris malic enzyme from NAD to NADP. However, it is confirmed that this residue is an important second layer residue that affects the packing of the first layer residues that directly interact with the cofactor.  相似文献   

12.
Mueller M  Nidetzky B 《FEBS letters》2007,581(7):1403-1408
Replacements of Asp-295 by Asn (D295N) and Glu (D295E) decreased the catalytic center activity of Leuconostoc mesenteroides sucrose phosphorylase to about 0.01% of the wild-type level (k(cat)=200s(-1)). Glucosylation and deglucosylation steps of D295N were affected uniformly, approximately 10(4.3)-fold, and independently of leaving group ability and nucleophilic reactivity of the substrate, respectively. pH dependences of the catalytic steps were similar for D295N and wild-type. The 10(5)-fold preference of the wild-type for glucosyl transfer compared with mannosyl transfer from phosphate to fructose was lost in D295N and D295E. Selective disruption of catalysis to glucosyl but not mannosyl transfer in the two mutants suggests that the side chain of Asp-295, through a strong hydrogen bond with the equatorial sugar 2-hydroxyl, stabilizes the transition states flanking the beta-glucosyl enzyme intermediate by > or = 23kJ/mol.  相似文献   

13.
The pH dependence of the kinetic parameters and the primary deuterium isotope effects with nicotinamide adenine dinucleotide (NAD) and also thionicotinamide adenine dinucleotide (thio-NAD) as the nucleotide substrates were determined in order to obtain information about the chemical mechanism and location of rate-determining steps for the Ascaris suum NAD-malic enzyme reaction. The maximum velocity with thio-NAD as the nucleotide is pH-independent from pH 4.2 to 9.6, while with NAD, V decreases below a pK of 4.8. V/K for both nucleotides decreases below a pK of 5.6 and above a pK of 8.9. Both the tartronate pKi and V/Kmalate decrease below a pK of 4.8 and above a pK of 8.9. Oxalate is competitive vs. malate above pH 7 and noncompetitive below pH 7 with NAD as the nucleotide. The oxalate Kis increases from a constant value above a pK of 4.9 to another constant value above a pK of 6.7. The oxalate Kii also increases above a pK of 4.9, and this inhibition is enhanced by NADH. In the presence of thio-NAD the inhibition by oxalate is competitive vs. malate below pH 7. For thio-NAD, both DV and D(V/K) are pH-independent and equal to 1.7. With NAD as the nucleotide, DV decreases to 1.0 below a pK of 4.9, while D(V/KNAD) and D(V/Kmalate) are pH-independent. Above pH 7 the isotope effects on V and the V/K values for NAD and malate are equal to 1.45, the pH-independent value of DV above pH 7. From the above data, the following conclusions can be made concerning the mechanism for this enzyme. Substrates bind to only the correctly protonated form of the enzyme. Two enzyme groups are necessary for binding of substrates and catalysis. Both NAD and malate are released from the Michaelis complex at equal rates which are equal to the rate of NADH release from E-NADH above pH 7. Below pH 7 NADH release becomes more rate-determining as the pH decreases until at pH 4.0 it completely limits the overall rate of the reaction.  相似文献   

14.
Purified NAD-malic enzyme from Ascaris suum is rapidly inactivated by the arginine reagent, 2,3-butanedione, and this inactivation is facilitated by 30 mM borate. Determination of the inactivation rate as a function of butanedione concentration suggests a second-order process overall, which is first order in butanedione. A second-order rate constant of 0.6 M-1 s-1 at pH 9 is obtained for the butanedione reaction. The inactivation is reversed by removal of the excess reagent upon dialysis. The enzyme is protected against inactivation by saturating amounts of malate in the presence and absence of borate. The divalent metal Mg2+ affords protection in the presence of borate but has no effect in its absence. The nucleotide reactant NAD+ has no effect on the inactivation rate in either the presence or absence of borate. A dissociation constant of 24 mM is obtained for E:malate from the decrease in the inactivation rate as a function of malate concentration. An apparent Ki of 0.5 mM is obtained for oxalate (an inhibitor competitive vs malate) from E:Mg:oxalate while no significant binding is observed for oxalate using the butanedione modified enzyme. The pH dependence of the first-order rate of inactivation by butanedione gives a pKa of 9.4 +/- 0.1 for the residue(s) modified, and this pK is increased when NAD is bound. The arginine(s) modified is implicated in the binding of malate.  相似文献   

15.
Pan JJ  Yang LW  Liang PH 《Biochemistry》2000,39(45):13856-13861
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes condensation of eight molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to yield C(55)-undecaprenyl pyrophosphate. We have mutated the aspartates and glutamates in the five conserved regions (I to V) of UPPs protein sequence to evaluate their effects on substrate binding and catalysis. The mutant enzymes including D26A, E73A, D150A, D190A, E198A, E213A, D218A, and D223A were expressed and purified to great homogeneity. Kinetic analyses of these mutant enzymes indicated that the substitution of D26 in region I with alanine resulted in a 10(3)-fold decrease of k(cat) value compared to wild-type UPPs. Its IPP K(m) value has only minor change. The mutagenesis of D150A has caused a much lower IPP affinity with IPP K(m) value 50-fold larger than that of wild-type UPPs but did not affect the FPP K(m) and the k(cat). The E213A mutant UPPs has a 70-fold increased IPP K(m) value and has a 100-fold decreased k(cat) value compared to wild-type. These results suggest that D26 of region I is critical for catalysis and D150 in region IV plays a significant role of IPP binding. The E213 residue in region V is also important in IPP binding as well as catalysis. Other mutant UPPs enzymes in this study have shown no significant change (<5-fold) of k(cat) with exception of E73A and D218A. Both enzymes have 10-fold lower k(cat) value relative to wild-type UPPs.  相似文献   

16.
Treatment with diethylpyrocarbonate results in a first-order loss of the malate oxidative decarboxylase activity of NAD-malic enzyme. First-order plots are biphasic, with about 40-50% activity loss in the first phase. The inactivation process is not saturable, and the second-order rate constant is 4.7 M-1 S-1. Malate (250 mM) provides complete protection against inactivation (as measured by a decrease in the inactivation rate), and less malate is required with Mg2+ present. Partial protection (50%) is afforded by either NAD+ (1 mM) or Mg2+ (50 mM). Treatment of modified (inactive) enzyme with hydroxylamine restores activity to 100% of the control when corrected for the effect of hydroxylamine on unmodified enzyme. A total of 10-13 histidine residues/subunit are acylated concomitant with loss of activity while 1-2 tyrosines are modified prior to any activity loss. The presence of Mg2+ and malate at saturating concentrations protect 1-2 histidine residues/subunit. The intrinsic fluorescence of the enzyme decreases with time after addition of diethylpyrocarbonate, but the rate constant for this process is at least 10-fold too low to account for the biphasicity observed in the first order plots. The histidine modified which is responsible for loss of activity has a pK of 8.3 as determined from the pH dependence of the rate of inactivation. The histidine titrated is still modified under conditions where the residue is completely protonated but at a rate 1/100 the rate of the unprotonated histidine. The results suggest that 1-2 histidines are in or near the malate binding site and are required for malate oxidative decarboxylation.  相似文献   

17.
The 6-phosphate of 6-phosphogluconate (6PG) is proposed to anchor the sugar phosphate in the active site and aid in orientating the substrate for catalysis. In order to test this hypothesis, alanine mutagenesis was used to probe the contribution of residues in the vicinity of the 6-phosphate to binding of 6PG and catalysis. The crystal structure of sheep liver 6-phosphogluconate dehydrogenase shows that Tyr-191, Lys-260, Thr-262, Arg-287, and Arg-446 contribute a mixture of ionic and hydrogen bonding interactions to the 6-phosphate, and these interactions are likely to provide the majority of the binding energy for 6PG. All mutant enzymes, with the exception of T262A, exhibit an increase in K(6PG) that ranges from 5- to 800-fold. There is also a less pronounced increase in K(NADP), ranging from 3- to 15-fold, with the exception of T262A. The R287A and R446A mutant enzymes exhibit a dramatic decrease in V/E(t) (600- and 300-fold, respectively) as well as in V/K(6PG)E(t) (10(5) - and 10(4)-fold), and therefore no further characterization was carried out with these two mutant enzymes. No change in V/E(t) was observed for the Y191A mutant enzyme, whereas 20- and 3-fold decreases were obtained for the K260A and T262A mutant enzymes, respectively, resulting in a decrease in V/K(6PG)E(t) range from 3- to 120-fold. All mutant enzymes also exhibit at least an order of magnitude increase in 13C-isotope effect -1, indicating that the decarboxylation step has become more rate-limiting. Data are consistent with significant roles for Tyr-191, Lys-260, Thr-262, Arg-287, and Arg-446 in providing the binding energy for 6PG. In addition, these residues also likely ensure proper orientation of 6PG for catalysis and aid in inducing the conformation change that precedes, and sets up the active site for, catalysis.  相似文献   

18.
Mitochondrial NAD-malic enzyme isolated from bundle sheath cells of different C4 species was activated 5- to 15-fold by fructose 1,6-phosphate. With 2.5 mm malate, fructose 1,6-phosphate was optimally active between 30 and 100 μm and activation was similar to that previously reported for CoA and acetyl-CoA. 3-Phosphoglycerate and isocitrate were less effective activators and other metabolites including fructose 6-phosphate and glyceraldehyde 3-phosphate were without effect. Depending on the source of the enzyme, the response to increasing fructose 1,6-phosphate was either sigmoidal, with activation resulting from an increase in the affinity of the enzyme for malate, or hyperbolic, in which case the activator increased maximum velocity. Bicarbonate inhibited NAD-malic enzyme activity, acting competitively with respect to both malate and the activators fructose 1,6-phosphate and CoA. The enzyme was also inhibited in a similar competitive manner by higher concentrations of chloride and nitrate ions. Decarboxylation of C4 acids by isolated mitochondria was inhibited by bicarbonate and nitrate ions, and, as with isolated NAD-malic enzyme, inhibition was competitive with respect to malate. The rate of C4 acid decarboxylation by freshly prepared mitochondria was not increased by adding fructose 1,6-phosphate or CoA. However, decarboxylating activity declined after incubating mitochondria at 30 °C without C4 acids, and this loss of activity was largely prevented by fructose 1,6-phosphate. Mitochondria were found to decarboxylate oxaloacetate as rapidly as aspartate.  相似文献   

19.
Clyne T  Kinch LN  Phillips MA 《Biochemistry》2002,41(44):13207-13216
S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl-dependent enzyme that is processed from a single polypeptide into two subunits creating the cofactor. In the human enzyme, both the proenzyme processing reaction and enzyme activity are stimulated by the polyamine putrescine. The processing reaction of Trypanosoma cruzi AdoMetDC was studied in an in vitro translation system. The enzyme was fully processed in the absence of putrescine, and the rate of this reaction was not stimulated by addition of the polyamine. Residues in the putrescine binding site of the human enzyme were evaluated for their role in processing of the T. cruzi enzyme. The E15A, I80K/S178E, D174A, and E256A mutant T. cruzi enzymes were fully processed. In contrast, mutation of R13 to Leu (the equivalent residue in the human enzyme) abolished processing of the T. cruzi enzyme, demonstrating that Arg at position 13 is a major determinant for proenzyme processing in the parasite enzyme. This amino acid change is a key structural difference that is likely to be a factor in the finding that putrescine has no role in processing of the T. cruzi enzyme. In contrast, the activity of T. cruzi AdoMetDC is stimulated by putrescine. Equilibrium sedimentation experiments demonstrated that putrescine does not alter the oligomeric state of the enzyme. The putrescine binding constant for binding to the T. cruzi enzyme (K(d) = 150 microM) was measured by a fluorescence assay and by ultrafiltration with a radiolabeled ligand. The mutant T. cruzi enzyme D174V no longer binds putrescine, and is not activated by the diamine. In contrast, mutation of E15, S178, E256, and I80 had no effect on putrescine binding. The k(cat)/K(m) values for E15A and E256A mutants were stimulated by putrescine to a smaller extent than the wild-type enzyme (2- and 4-fold vs 11-fold, respectively). These data suggest that the putrescine binding site on the T. cruzi enzyme contains only limited elements (D174) in common with the human enzyme and that the diamine plays different roles in the function of the mammalian and parasite enzymes.  相似文献   

20.
The origins of human acetylcholinesterase (HuAChE) reactivity toward the lethal chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) and its stereoselectivity toward the P(S)-VX enantiomer (VX(S)) were investigated by examining the reactivity of HuAChE and its mutant derivatives toward purified enantiomers of VX and its noncharged isostere O-ethyl S-(3-isopropyl-4-methylpentyl) methylphosphonothioate (nc-VX) as well as echothiophate and its noncharged analogue. Reactivity of wild-type HuAChE toward VX(S) was 115-fold higher than that toward VX(R), with bimolecular rate constants of 1.4 x 10(8) and 1.2 x 10(6) min(-1) M(-1). HuAChE was also 12500-fold more reactive toward VX(S) than toward nc-VX(S). Substitution of the cation binding subsite residue Trp86 with alanine resulted in a 3 order of magnitude decrease in HuAChE reactivity toward both VX enantiomers, while this replacement had an only marginal effect on the reactivity toward the enantiomers of nc-VX and the noncharged echothiophate. These results attest to the critical role played by Trp86 in accommodating the charged moieties of both VX enantiomers. A marked decrease in stereoselectivity toward VX(S) was observed following replacements of Phe295 at the acyl pocket (F295A and F295A/F297A). Replacement of the peripheral anionic site (PAS) residue Asp74 with asparagine (D74N) practically abolished stereoselectivity toward VX(S) (130-fold decrease), while a substitution which retains the negative charge at position 74 (D74E) had no effect. The results from kinetic studies and molecular simulations suggest that the differential reactivity toward the VX enantiomers is mainly a result of a different interaction of the charged leaving group with Asp74.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号