首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermophilic, xylanolytic, anaerobic organism, Dictyoglomus sp. B1, was cultivated in batch and continuous cultures in media containing insoluble beech-wood xylan. The extracellular xylanase activity levels obtained for the two cultivation methods were compared. Experiments were performed separately to determine the optimum substrate concentration, dilution rate, pH and temperature for xylanase production. Maximum xylanase activity was found at a substrate concentration of 1.5 g xylan/l, a dilution rate of 0.112 h–1, pH 8.0 and at 7°C. Different combinations of these optimum values were used in a 23 factorial experiment to investigate whether an increase in the xylanase production/activity could be achieved. A maximum xylanase activity of 2312 U/l was found when fermentors were operated at 73°C with a substrate concentration of 1.5 g xylan/l, pH 8.0, and a dilution rate of 0.112 h–1. Thus, the optimum xylanase activity in the factorial experiment was obtained when the conditions that gave the maximum xylanase activities in the individual experiments were combined. Optimum xylanase activity obtained in the 23 factorial experiment was 6.2 times higher than the activity found in the initial batch culture (373 U/l) and 3.0 times higher than the activity of a batch culture (783 U/l) grown at the same optimum conditions as the factorial experiment. The higher specific xylanase activity (217 U/mg protein) found in the 23 factorial experiment was 4.1 times higher than the specific activity in the initial batch culture (53 U/mg protein).  相似文献   

2.
To investigate the synthesis of two extracellular endoxylanases, xylan-binding and unbound xylanases from an alkaliphilic Bacillus firmus, washed cells were incubated in alkaline mineral salt media containing various carbon sources. The 23 kDa xylan-binding endoxylanase (XBE), which hydrolyses insoluble xylan, was produced before the 45 kDa, unbound endoxylanase. All the carbon sources tested at 5 mg ml–1, including glucose, induced production of XBE but the unbound xylanase was totally repressed by glucose. The production of XBE increased when glucose concentration increased but was not synthesized until the glucose in the medium was less than 1 mg ml–1.  相似文献   

3.
Depending on the biomass yield on glucose and the cell morphology ofBacillus thuringiensis, three different metabolic states were observed in continuous culture. At dilution rates between 0.18 h–1 and 0.31 h–1 vegetative cells, sporulating bacteria and spores coexisted, while glucose and amino acids were consumed. Only vegetative cells were observed at dilution rates between 0.42 h–1 and 0.47 h–1 and glucose was used as the main carbon and energy source. AtD = 0.50 h–1 the biomass yield on glucose decreases sharply. To define better the specific growth rate range in which the microorganism uses mainly glucose, a dilution rate of 0.25–0.45 h–1 was studied. The experimental data could be adjusted to a Monod model and the following rate coefficients and growth yields were determined: maximum specific growth rate 0.54 h–1, saturation constant 0.56 mg glucose ml–1, biomass growth yields 0.43 g cells (g glucose)–1, and 0.76 g cells (g oxygen)–1, and maintenance coefficients 0.065 g glucose (g cells)–1 h–1 and 0.039 g oxygen (g cells)–1 h–1.  相似文献   

4.
Summary Maximum volumetric productivities of biomass (1.40 gl–1h–1) and lactic acid (8.93 gl–1h–1) for a continuous culture ofLactobacillus delbreuckii occurred between dilution rates 0.35h–1 and 0.40h–1. All major nutrients were in excess in these cultures. Glucose utilisation was complete at dilution rates of 0.1h–1 and lower. Product and biomass yields were constant in the dilution rate range studied (0.05h–1 to 0.50h–1).  相似文献   

5.
Summary A system for continuous culture of the hyperthermophilic archaeum Pyrococcus furiosus in the absence of elemental sulphur has been developed. An all-glass gas-lift bioreactor was used to provide high mass transfer at low shear forces, whilst eliminating the potential for corrosion. Steady-state cell densities of P. furiosus were found to increase with higher inert gas flow rates, reaching a maximum in this system with 0.5 vol. vol–1 min–1 of nitrogen (N2). N2 permitted higher cell densities than the other inert gases tested (argon, helium and sulphur hexafluoride) under equivalent conditions. At 0.5 vol. vol–1 min–1 of N2 a cell density in excess of 3 × 109 ml–1 could be maintained indefinitely at a dilution rate of 0.2 h–1. Higher dilution rates gave progressively lower steady-state cell densities. Teh biomass production was maximal, however, at a dilution rate of 0.4 h–1. At this dilution rate the bioreactor was able to generate more than 1.5 g wet weight of cells h–1 l–1 culture volume.Correspondence to: N. Raven  相似文献   

6.
Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpea, comprises eight pathogenic races and two pathotypes. Races 0 and 5, representative of the least virulent yellowing pathotype and the most virulent wilt pathotype, respectively, produced extracellular xylanases when grown on minimal medium supplemented with either 1% commercial birchwood xylan or 0.3% chickpea cell walls. The pattern of extracellular proteins analysed by denaturing polyacrylamide gel electrophoresis in the two media presented some minor but distinctive differences between fungal races. By preparative isoelectrofocusing, the xylanase activity in cell wall-culture filtrates could be resolved into basic and neutral fractions with pI values around to 10 and 8, respectively, whereas the xylan-culture filtrates contained an additional acidic fraction of pI around 4. A common major xylanase was purified 7-fold to homogeneity by cation-exchange chromatography and chromatofocusing. The purified xylanase has a molecular weight of 21.6 kDa, optimum pH and temperature of 5.5 and 55 °C, respectively, pI in the range of 8.2 to 9.0, and Km and Vmax values of 2.24 mg ml–1 (birchwood xylan as substrate) and 1200 nkat mg–1 protein (72 U mg–1 protein), respectively. The enzyme has an endo mode of action, hydrolysing xylan to xylobiose and higher short-chain xylooligosaccharides without forming free xylose.  相似文献   

7.
A Pseudomonas sp. strain NGK1 (NCIM 5120) capable of utilizing 2-methylnaphthalene (2-MN) was immobilized in various matrices namely, polyurethane foam (PUF), alginate, agar and polyvinyl alcohol (PVA) (1.5 × 1012 c.f.u. g–1 beads). The degradation rates of 25 and 50 mM 2-MN by freely suspended cells (2 × 1011 c.f.u. ml–1) and immobilized cells in batches, semi-continuous with shaken culture and continuous degradation in a packed-bed reactor were compared. The PUF-immobilized cells achieved higher degradation of 25 and 50 mM of 2-MN than freely suspended cells and the cells immobilized in alginate, agar or PVA. The PVA- and PUF-immobilized cells could be reused for more than 30 and 20 cycles respectively, without losing any degradation capacity. The effect of dilution rates on the rate of degradation of 25 and 50 mM 2-MN with freely suspended and immobilized cells were compared in the continuous system. Increase in dilution rate increased the degradation rate only up to 1 h–1 in free cells with 25 mM 2-MN and no significant increase was observed with 50 mM 2-MN. With immobilized cells, the degradation rate increased with increase in dilution rate up to 1.5 h–1 for 25 mM and 1 h–1 for 50 mM 2-MN. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for biodegradation of 2-MN.  相似文献   

8.
The kinetics of continuous l-sorbose fermentation using Acetobacter suboxydans with and without cell recycle (100%) were investigated at dilution rates (D) of 0.05, 0.10, 0.15 and 0.3 h–1. The biomass and sorbose concentrations for continuous fermentation without recycle increased as the dilution rate was increased from 0.05 to 0.10 h–1. A maximum biomass concentration of 8.44 g l–1 and sorbose concentration of 176.90 g l–1 were obtained at D=0.10 h–1. The specific rate of sorbose production and volumetric sorbose productivity at this dilution rate were 2.09 g g–1 h–1 and 17.69 g l–1 h–1. However, on further increasing the dilution rate to 0.3 h–1, both biomass and sorbose concentrations decreased to 2.93 and 73.20 g l–1 respectively, mainly due to washout of the reactor contents. However, the specific rate of sorbose formation and volumetric sorbose productivity at this dilution rate increased to 7.49 g g–1 h–1 and 21.96 g l–1 h–1 respectively. Continuous fermentation with 100% cell recycle served to further enhance the concentration of biomass and sorbose to 28.27 and 184.32 g l–1 respectively (in the reactor at a dilution rate of 0.05 h–1). Even though, there was a decline in the biomass and sorbose concentrations to 6.8 and 83.40 g l–1 at a dilution rate of 0.3 h–1, the specific rates of sorbose formation and volumetric sorbose productivity increased to 3.67 g g–1h–1 and 25.02 g l–1 h–1.  相似文献   

9.
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, β-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60°C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.  相似文献   

10.
Summary A salicylate-hydroxylase-producing strain of Pseudomonas putida with an unusual capability to grow at toxic levels of salicylate up to 10 g l–1 has been isolated. It grew well under continuous culture conditions, with optimum growth at pH 6.5 and a temperature of 25° C. The use of an ammonium salt as a nitrogen source, instead of nitrate, resulted in a 30–40% increase in its biomass yield coefficient. Optimum growth under continuous culture conditions was achieved using 4 g l–1 salicylate at 25° C, pH 6.5 and 0.2 h–1 dilution rate. High salicylate hydroxylase enzyme activity [236 units (U) l–1] and productivity (424.8 U h–1) were obtained at a dilution rate of 0.45 h–1 using a mineral medium containing 4 g l–1 of salicylate. Operating under continuous culture conditions with oxygen limitation and a slight accumulation of residual salicylate (0.2 g l–1) resulted in a decrease in culture performance and enzyme productivity. Correspondence to: R. Marchant  相似文献   

11.
The continuous bioconversion of xylose-containing solutions (obtained by acid hydrolysis of barley bran) into xylitol was carried out using the yeast Debaryomyces hansenii under microaerophilic conditions with or without cell recycle. In fermentations without cell recycle, the volumetric productivities ranged from 0.11–0.6 g l–1 h–1 were obtained for dilution rates of 0.008–0.088 h–1. In experiments performed with cell recycle after membrane separation, the optimum xylitol productivity (2.53 g l–1 h–1) was reached at a dilution rate of 0.284 h–1.  相似文献   

12.
Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483, when grown on lactose in continuous culture, showed increasing specific yields and volumetric productivities of exopolysaccharide (EPS) with increasing dilution rate. Specific and volumetric productivities of lactate and galactose, as extracellular metabolites, increased in response to the incremental changes in the dilution rate up to 0.4 h–1. Elevated Yp/s values determined for EPS (0.025 g EPSg lactose–1) at the dilution rates of 0.3 h–1–0.4 h–1, relative to those determined at lower dilution rates, suggest a diversion of carbon flux towards EPS being associated with the higher rates of growth.  相似文献   

13.
Lactobacillus delbrueckii subsp.bulgaricus ATCC 11842 was grown in a chemostat at 45°C and pH 5.5 using glucose as the carbon source, with the aim of optimizing biomass production. Cells were grown in a complex medium under nitrogen. At dilution rates lower than 0.18h–1, it was difficult to keep steady-state conditions and pleomorphic forms were observed. The addition of 30mM Ca2+ and Mn2+ reverted the cells to normal shape: 30mM Mg2+ had no effect. Increasing the dilution rate resulted in normal morphology without the addition of any cations. Under these conditions, a maximum productivity of 1.24g dry biomass 1–1 h–1 was obtained. The maximum growth yield, corrected for maintenance, was 30g biomass mol–1 glucose and the maintenance energy was 0.26g glucose g–1 biomass h–1. Lactate was the main fermentation product at all glucose concentrations used in the fed medium. Cells grown at high dilution rates had normal technological properties (acid production and proteolysis) when tested in milk.  相似文献   

14.
Summary Oxidation of ferrous iron by Thiobacillus ferrooxidans cells passively immobilised in polyurethane foam particles, using both repeated batches and continuous operation, was studied in a laboratory-scale reactor. Repeated batches yielded complete oxidation at higher rates than single batches, providing resident inocula for subsequent batches. In continuous operation maximum ferric iron productivities were achieved at dilution rates well above theoretical washout values. At a dilution rate of 0.31 h–1 [approximately three times the maximum specific growth rate (max)], a productivity of 1.56 kg m–3 h–1, based on total ferric iron, or 1.0 kg m–3 h–1 based on dissolved ferric iron, was achieved. In addition, cells immobilised in the foam particles retained their oxidative ability for periods of up to 6 weeks when stored in the open air and could be reused immediately.  相似文献   

15.
Summary A test system was set up where the build-up of a biofilm on a defined surface could be studied in a carbon source limited chemostat.The attachment of P. putida ATCC 11172 to glass when growing on L-asparagine was studied at different dilution rates (specific growth rates) from 0.1 to 1.5 h–1 The number of attached colony forming units (cfu) increased with dilution rate from 1×106 cfu/cm2 at 0.1 h–1 to 4×107 cfu/cm2 at 1.0 h–1 and then the attachment decreased to about 6×106 cfu/cm2 at higher dilution rates (1.1–1.5 h–1). The number of attached cfu was measured after 24 h exposure. The value of the maximum specific growth rate in batch culture was 0.6 h–1.The total amount of attached cell-mass followed roughly the same pattern as the viable count.The viable count of the cells suspended in the growth medium showed its lowest value at the same dilution rate as resulted in maximum adhesion.It was shown that the effect of growth rate on the biofilm build-up of P. putida is significant, and ought to be borne in mind when continuous culture systems are set up and results evaluated.  相似文献   

16.
Summary The nonsporulating extreme thermophile Thermus thermophilus was grown in continuous culture at dilution rates up to 2.65 h–1 at 75°C and pH 6.9 on complex medium. Concomitantly very low yield (Y=0.12 g cell dry weight g–1 utilized organic carbon) and incomplete substrate utilization (always less than 45%) were found. In batch cultures T. thermophilus could be grown with max =h–1, in shake flasks only with max =h–1 with the same low yield and incomplete substrate utilization. Stable steady states at 84C and 45°C were realized at a dilution rate of 0.3 h–1 whereas at 86°C and 40°C no growth could be detected. Artefacts arising from wall growth (in bioreactors) or improper materials must be ruled out. Inhibition of growth by organic substrates was demonstrated at low concentrations: a decrease in the yield obtained was found when more than 0.7 gl–1 of meat extract were supplied in the medium. The maintenance requirement for oxygen is potentially very high and was determined to be 10 to 15 mmol g–1 h–1.  相似文献   

17.
Summary A novel yeast strain, NCIM 3574, isolated from a decaying wood produced up to 570 IU ml–1 of xylanolytic enzymes when grown on medium containing 4% xylan. The yeast strain also produced xylanase activity (40–50 IU ml–1) in the presence of soluble carbon sources like xylose or arabinose. No xylanase activity was detected when the organism was grown on glucose. The crude xylanase preparation showed no activity towards cellulolytic substrates but low levels of -xylosidase (0.1 IU ml–1) and -l-arabinofuranosidase (0.05 IU ml–1) were detected. The temperature and pH optima for the crude xylanase preparation were 55°C and 4.5 respectively. The crude xylanase produced mainly xylose from xylan within 5 min. Prolonged hydrolysis of xylan produced xylobiose and arabinose, in addition to xylose, as the end products. The presence of arabinose as one of the end products in xylan hydrolysate could be due to the low levels of arabinofuranosidase enzyme present in the crude fermentation broth.  相似文献   

18.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

19.
Thermostable cellulase was produced by Streptomyces sp. T3-1 grown in a 50-l fermenter. Maximum cellulase activity was attained on the fourth day when agitation speeds and aeration rates were controlled at 300 rpm and 0.75 vvm, respectively. Maximum enzyme activities were: 148 IU CMCase ml–1, 45 IU Avicelase ml–1, and 137 IU -glucosidase ml–1 with productivity of 326 IU l–1 h–1, which were 10--32% higher than the values obtained in shake-flask culturesRevisions requested 12 October 2004/1 November 2004; Received received 1 November 2004/14 December 2004  相似文献   

20.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号