首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Four rpoD hybridizing signals have been identified in the chromosome of Brevibacterium lactofermentum. Two rpoD-like genes, sigA and sigB, have been cloned and sequenced, and they encode principal sigma factors of the RNA polymerase. The deduced amino acid sequences of SigA and SigB showed very high similarities to those of Mycobacterium smegmatis MysA and MysB proteins, respectively, and also to those of HrdB proteins from different Streptomyces species. SigA and SigB maintain the conserved motifs of sigma 70-like principal sigma factors. sigB is closely linked to the dtxR gene (encoding a repressor of iron-regulated promoters homologous to the diphtheria toxin repressor from Corynebacterium diphtheriae.  相似文献   

10.
11.
12.
13.
14.
A sigma 70-like gene, sigA, has been identified from Corynebacterium ammoniagenes. The sigA gene encodes a polypeptide of 467 amino acids with a calculated molecular mass of 52036 Da. The deduced amino acid sequence preserves the common motifs of the primary sigma factors and shows very high similarity to those of SigA (sigmaA) homologues from high G+C Gram-positive bacteria, which suggest that the sigA gene encodes the primary sigma factor. The sigA gene is transcribed as a monocistronic mRNA of 2 kb and its mRNA occurs during the exponential growth phase and decays rapidly on entry into the stationary phase. The open reading frame encoding polyphosphate glucokinase-like protein is closely linked to the sigA gene.  相似文献   

15.
Protein translation in the plastid (apicoplast) of Plasmodium spp. is of immense interest as a target for potential anti-malarial drugs. However, the molecular data on apicoplast translation needed for optimisation and development of novel inhibitors is lacking. We report characterisation of two key translation elongation factors in Plasmodium falciparum, apicoplast-encoded elongation factor PfEF-Tu and nuclear-encoded PfEF-Ts. Recombinant PfEF-Tu hydrolysed GTP and interacted with its presumed nuclear-encoded partner PfEF-Ts. The EF-Tu inhibitor kirromycin affected PfEF-Tu activity in vitro, indicating that apicoplast EF-Tu is indeed the target of this drug. The predicted PfEF-Ts leader sequence targeted GFP to the apicoplast, confirming that PfEF-Ts functions in this organelle. Recombinant PfEF-Ts mediated nucleotide exchange on PfEF-Tu and homology modeling of the PfEF-Tu:PfEF-Ts complex revealed PfEF-Ts-induced structural alterations that would expedite GDP release from PfEF-Tu. Our results establish functional interaction between two apicoplast translation factors encoded by genes residing in different cellular compartments and highlight the significance of their sequence/structural differences from bacterial elongation factors in relation to inhibitor activity. These data provide an experimental system to study the effects of novel inhibitors targeting PfEF-Tu and PfEF-Tu.PfEF-Ts interaction. Our finding that apicoplast EF-Tu possesses chaperone-related disulphide reductase activity also provides a rationale for retention of the tufA gene on the plastid genome.  相似文献   

16.
17.
18.
19.
20.
Development of plastids into chloroplasts, the organelles of photosynthesis, is triggered by light. However, little is known of the factors involved in the complex coordination of light-induced plastid gene expression, which must be directed by both nuclear and plastid genomes. We have isolated an Arabidopsis mutant, abc1, with impaired chloroplast development, which results in a pale green leaf phenotype. The mutated nuclear gene encodes a sigma factor, SigB, presumably for the eubacterial-like plastid RNA polymerase. Our results provide direct evidence that a nuclear-derived prokaryotic-like SigB protein, plays a critical role in the coordination of the two genomes for chloroplast development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号