首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a simple biologically non-invasive method for determining the critical micellar concentration (CMC) of bile salts using pure naturally occurring bilirubin IX alpha monoglucuronide (BMG), an important bile pigment present in virtually all mammalian biles. This methodology employs visible absorbance spectroscopy of BMG in bile salts over a range of bile salt concentrations that include the reported CMC. Using 100 microM-BMG in 0.4 M-imidazole buffer at pH 7.8, we calculated that the CMC for sodium taurochenodeoxycholate is between 2.5 and 3.0 mM based on: (1) an abrupt change in lambda max. in this concentration range, (2) a precipitous decrease in the amplitude of the absorbance shoulder at 450 nm, (3) a sudden decrease in the second derivative absorbance of BMG at 400 nm and an increase in absorbance at 470 nm, (4) a sharp change in the 4th derivative absorbance at 375 and 395 nm. In contrast, sodium taurocholate, a bile salt that reportedly does not have a CMC but continuously self-associates over a wide concentration range, exhibited none of these changes. The use of derivative spectroscopy enhances the ability to detect the CMC changes and also indicates the number of BMG species in solution and their relative energy states.  相似文献   

2.
The equilibrium of bile salt between aqueous phase and mixed micelle was studied in solutions of pure bile salt and lecithin comparing taurocholate and taurochenodeoxycholate. The relationship between bile salt concentration in the aqueous phase and the ratio of bile salt/lecithin in the mixed micelle was determined by equilibrium dialysis on serial dilutions of these solutions. Extrapolation of this relationship to zero mixed-micellar bile salt permitted calculation of the critical micelle concentration (CMC) of the mixed micelle. For taurocholate, taurochenodeoxycholate, and an equimolar mix of these two bile salts, the mixed micelle CMC's were 3.1 mM, 0.47 mM, and 0.89 mM respectively. In the most concentrated solutions, aqueous phase bile salt concentration surpassed the CMC of the simple bile salt micelle by more than four-fold indicating the presence of simple micelles as well as mixed micelles. At all dilutions taurochenodeoxycholate had a much greater affinity for the mixed micelle than did taurocholate. This last finding may be the reason for the superior cholesterol solubilizing capacity of taurochenodeoxycholate-lecithin solutions compared to taurocholate-lecithin solutions.  相似文献   

3.
Pigment gallstones contain considerable amounts of unconjugated bilirubin (UCB) in the form of calcium bilirubinate and/or bilirubin polymers. Since more than 98% of bile pigments are excreted as conjugates of bilirubin, the source of this UCB needs to be identified. By using a rapid h.p.l.c. method, we compared the non-enzymic hydrolysis of bilirubin monoglucuronide (BMG) and bilirubin diglucuronide (BDG) to UCB in model bile and in native guinea-pig bile. Model biles containing 50 microM solutions of pure BMG and BDG were individually incubated in 25 mM-sodium taurocholate (NaTC) and 0.4 M-imidazole/5 mM-ascorbate buffer (TC-BUF) at 37 degrees C. Over an 8 h period, BMG hydrolysis produced 4-6 times more UCB than BDG hydrolysis. At pH 7.4, 25% of the BMG was converted into UCB, whereas only 4.5% of BDG was converted into UCB. Hydrolysis rates for both BMG and BDG followed the pH order 7.8 greater than 7.6 approximately equal to 7.4 greater than 7.1 Incubation with Ca2+ (6.2 mM) at pH 7.4 in TC-BUF resulted in precipitated bile pigment which, at 100 X magnification, appeared similar to precipitates seen in the bile of patients with pigment gallstones. At pH 7.4, lecithin (crude phosphatidylcholine) (4.2 mM) was a potent inhibitor of hydrolysis of BMG and BDG. The addition of a concentration of cholesterol equimolar with that of lecithin eliminated this inhibitory effect. Guinea-pig gallbladder bile incubated with glucaro-1,4-lactone (an inhibitor of beta-glucuronidase) underwent hydrolysis similar to the model bile systems. The non-enzymic hydrolysis of bile pigments, especially BMG, may be an important mechanism of bile-pigment precipitation and, ultimately, of gallstone formation.  相似文献   

4.
Changes in the composition of bile accompanying the maximum biliary excretion (Emax) of bilirubin were investigated in sheep. Sheep fitted with chronic 'T-tubes' in the common bile duct were infused with taurocholate and bilirubin at various rates. Bile collected during both pre- and post-bilirubin steady-state periods was analyzed for the biliary concentration of electrolytes, bile salts, and bilirubin. Bilirubin Emax was 24.6 mumol/min while bile salt excretion during this period was 103 mumol/min. At Emax bilirubin entry into bile reached a concentration of 16.1 mumol/mL, increased the biliary concentration of sodium, did not change osmolarity of bile, and did not increase bile flow. The data suggest that bilirubin either interacts with mixed micelles in bile or forms molecular aggregates.  相似文献   

5.
The properties of sodium fusidate micelles were determined by a spectral shift technique, surface tension measurements, and ultracentrifugal analysis. The critical micellar concentrations, mean molecular areas, and apparent aggregation numbers were estimated as a function of the concentration of counterion (0.001-1.0 m Na(+)) at 20 degrees C. The critical micellar concentrations were studied over a temperature range of 10 degrees C to 40 degrees C at one counterion concentration (0.001 m Na(+)), and from these data the standard thermo-dynamic functions of micellization were calculated. The ability of sodium fusidate solutions to solubilize the insoluble swelling amphiphiles, lecithin and monoolein, was investigated, and the results were compared with the solubilizing properties of sodium taurocholate. The critical micellar concentrations of sodium fusidate approximated those of sodium taurocholate. The values fell in the range of 1.44-4.56 mm, varying with the technique used, counterion concentration, and temperature. The percentage of counterions bound to fusidate micelles in water, calculated from the log critical micellar concentration-log Na(+) curve, was estimated to be negligible, which compares with sodium taurocholate micelles. The critical micellar concentration of sodium fusidate exhibited a minimum at 20 degrees C, a phenomenon observed with other ionic detergents and with bile salts. Micelle formation in sodium fusidate solutions was shown to be primarily entropy-driven at 10 degrees and 20 degrees C, whereas at 30 degrees and 40 degrees C the enthalpy factor predominated. From the surface tension measurements the molecular areas of sodium fusidate and sodium taurocholate were calculated. The mean molecular area of fusidate was 101 A(2), whereas sodium taurocholate possessed a molecular area of 88 A(2). It was demonstrated that the sodium fusidate molecule, like a bile salt molecule, lies with its longitudinal axis horizontal at an air-water interface. The apparent aggregation number of sodium fusidate micelles increased from 5 to 16 as the concentration of counterion increased from 0.01 to 0.60 m Na(+). These values are slightly larger than the corresponding aggregation numbers of sodium taurocholate micelles.  相似文献   

6.
The interactions of the bile salt sodium taurocholate (TC) in 50 mM Trizma-HCl buffer and 150 mM NaCl (pH 9) at 37 degrees C with membranes composed of sphingomyelin (SM) were studied by dynamic light scattering, cryogenic transmission electron microscopy (cryo-TEM) and turbidity measurements. Small unilamellar SM vesicles were prepared by extrusion. Below the CMC of TC, taurocholate addition leads to vesicle growth due to incorporation of the taurocholate molecules into the vesicle bilayer. At around half the CMC of the bile salt, the SM vesicles are transformed into SM/TC mixed worm-like micelles, which are visualized by cryo-TEM for the first time. Further increase in the taurocholate concentration leads to the rupture of these structures into small spherical micelles. Interestingly, large non-spherical micelles were also identified for pure taurocholate solutions. Similar threadlike structures have been reported earlier for the bile salt sodium taurodeoxycholate [Rich, A., Blow, D., 1958. Nature 182, 1777; Blow, D.M., Rich, A., 1960. J. Am. Chem. Soc. 82, 3566-3571; Galantini, L., Giglio, E., La Mesa, C., Viorel-Pavel, N., Punzo, F., 2002. Langmuir 18, 2812] and for mixtures of taurocholate and phosphatidylcholate [Ulmius, J., Lindblom, G., Wennerstr?m, H., Johansson, L.B.-A., Fontel, K., S?derman, O., Ardvisson, G., 1982. Biochemistry 21, 1553; Hjelm, R.P., Thiyagarajan, P., Alkan-Onyuksel, H., 1992. J. Phys. Chem. 96, 8653] as determined by various scattering methods.  相似文献   

7.
Bilirubin is found in the center of cholesterol gallstones, but its pathogenic role in their formation is unknown. Bilirubin causes a disproportionate reduction of biliary lipid secretion without affecting bile salt secretion in association with a change of biliary lecithin species, which modulates the cholesterol crystallization process. Therefore, the present study investigated whether bilirubin can influence the cholesterol crystallization procedure, and the mechanism(s) of any such action. Supersaturated model bile was prepared (taurocholate/lecithin/cholesterol at 71:18:11, a total lipid concentration of 9.0 g/dl, and cholesterol saturation index of 1.8), and cholesterol crystallization was monitored over time using a spectrophotometer and video-enhanced differential contrast microscopy in the absence or presence of bilirubin (at a final concentration of 10 microM, 20 microM, 40 microM, and 100 microM). Bilirubin enhanced the onset of cholesterol crystallization by 50%, whereas the crystal growth rate and final crystal mass were reduced at a high concentration of bilirubin. Taken together, these results suggest that bilirubin influences the cholesterol crystallization process, by either a direct interaction with biliary lipids that alters metastability, an indirect alteration of the bile salt-micellar lipid holding capacity, or both. Thus, bilirubin may play a role in the pathogenesis of both cholesterol and pigment gallstones.  相似文献   

8.
The previously observed differences in properties of human leucocyte and fibroblast cerebroside sulphate sulphatase (cerebroside-3-sulphate 3-sulphohydrolase, EC 3.1.6.8) measured in vitro have been found to be due to subtle differences in incubation conditions. Maximum enzyme activity was observed with either crude sodium taurocholate or with pure sodium taurodeoxycholate. The optimum bile salt concentration of the enzyme in leucocyte or fibroblast extracts, but not the pure ox liver enzyme, was critically dependent on protein concentration. At low concentrations of the latter (less than 0.1 mg/ml), maximum activity was observed at taurocholate concentrations less than 0.5 mg/ml; at protein concentrations greater than 0.20 mg/ml substantially more bile acid (more than 1.3 mg/ml) was required to stimulate maximum activity. Addition of Triton X-100 or bovine serum albumin to the incubation mixtures increased the optimum taurocholate concentration. The dependence of the bile salt optimum on protein concentration appears to be related to the binding of the lipid substrate to membranous protein present in the tissue extracts. Release of the bound lipid is effected either by increasing the bile salt concentration or by adding Triton X-100. In the presence of excess bile salt human leucocyte, fibroblast and liver cerebroside sulphate sulphatase activity is stimulated by Triton at low protein concentrations; under identical conditions the pure or crude ox-liver enzyme is substatially inhibited. Our data also show that cerebroside sulphate sulphatase activity measured in extracts from leucocytes and fibroblasts, the tissues normally used to effect a diagnosis of metachromatic leucodystrophy, is the result of a complex interaction of bile salt, protein, Triton X-100 and probably the substrate itself. Any slight alteration in any of those factors, without a corresponding change in any or all of the others, can have a marked effect on the measured enzyme activity, and may lead to errors in the diagnosis of metachromatic leucodystrophy.  相似文献   

9.
The rate of peroxidation of unconjugated bilirubin (UCB), catalyzed by horseradish peroxidase (HRP), has been employed by Jacobsen (1969. FEBS Lett. 5: 112-114) to assess the fraction of unbound UCB in the presence of serum albumin. We used this method to examine the interactions of UCB with taurocholate (TC) at pH 8.2, assuming solubilization of UCB by TC is due to pigment binding and/or to partitioning into the micelle, thus rendering UCB unavailable for peroxidation. Inhibition of UCB peroxidation conformed with predictions based on these assumptions and demonstrated significant interaction of UCB with both monomeric and micellar TC. Although significant inhibition of UCB peroxidation was seen with TC monomer, inhibition was even greater with TC micelles. In contrast, pyrogallol, another substrate of HRP, acted very differently in the presence of TC. Inhibition of pyrogallol peroxidation by TC was much less than with UCB and occurred primarily with monomeric TC, with little further inhibition in the micellar range. The results of this study suggest that at taurocholate concentrations above 50 mM, similar to the physiologic bile salt concentrations in human bile, at least 99% of UCB is bound to bile salt, dramatically decreasing the concentration of unbound UCB. Since bile salts also bind Ca2+, they play a dual role in protection against the precipitation of calcium bilirubinate from bile. Therefore, bile salts are a major factor in the prevention of the formation and growth of pigment gallstones.  相似文献   

10.
The biliary excretion of bile salts, lysosomal acid phosphatase, and total proteins were studied in rats under different experimental conditions: during bile salt loss through a bile fistula and after loading with exogenous sodium taurocholate. The experimental models were suitable to demonstrate that variations in the excretion of bile salts were associated with those of acid phosphatase output. During bile salt depletion, acid phosphatase output showed a decrease parallel to that of bile salts. Following a single i.v. injection of sodium taurocholate and during its i.v. infusion, a rapid increase of acid phosphatase excretion in bile was seen. The patterns of enzyme outputs observed after administration of sodium taurocholate suggested a bulk discharge in bile of lysosomal contents. The profiles of protein output were similar to those of acid phosphatase suggesting an association between the secretory mechanism of these bile constituents. In contrast to sodium taurocholate, 4-methylumbelliferone, which also increases canalicular bile flow, did not produce changes in the excretory patterns of the bile components studied. Therefore, the results suggested a bile salt related secretion of acid phosphatase in the rat, which may involve protein secretion in bile.  相似文献   

11.
We examined, by reverse-phase high performance liquid chromatography (HPLC), the hydrophilic-hydrophobic balance of cholesterol and 12 non-cholesterol sterols and related this property to their equilibrium micellar solubilities in sodium taurocholate and sodium glycodeoxycholate solutions. Sterols investigated exhibited structural variations in the polar function (3 alpha-OH, 3 beta-OH, 3 beta-SH), nuclear double bonds (none, delta 5, or delta 7), side chain length (C27, C28, C29) and side chain double bonds (none, delta 22, or delta 24). In general, a sterol's hydrophilic-hydrophobic balance became progressively more hydrophobic (as exemplified by increasing HPLC retention values, k') with additions of side chain methyl (C28) and ethyl (C29) groups and with 3 beta-SH substitution of the 3-OH polar function. Side chain delta 22 and especially delta 24 double bonds rendered the sterols appreciably more hydrophilic, whereas a single nuclear double bond had little influence. Sterol solubilities (24 degrees C, 0.15 M Na+) were uniformly greater in 50 mM solutions of sodium glycodeoxycholate (range 0.15 to 2.5 mM) than in equimolar solutions of the more hydrophilic bile salt, sodium taurocholate (range 0.07 to 0.67 mM). For each bile salt system, a strong inverse correlation existed between micellar solubilities of sterols and their HPLC k' values, indicating that more hydrophilic sterols had greater micellar solubilities than the more hydrophobic ones. Based upon the aqueous monomeric solubilities of cholesterol (C27) and beta-sitosterol (C29) at 24 degrees C, we derived free energy changes associated with micellar binding and found that solubilization of both sterols was more energetically favored in glycodeoxycholate solutions. Although cholesterol exhibited a higher binding affinity than beta-sitosterol in glycodeoxycholate micelles, solubilization of beta-sitosterol in taurocholate micelles was more energetically favored than cholesterol by -0.6 kcal/mol. Based upon these results we offer a thermodynamic explanation for the greater micellar solubilities of more hydrophilic sterols and suggest that the high affinity, but low capacity, of a typical phytosterol for binding to trihydroxy bile salt micelles may provide a physical-chemical basis for its inhibition of intestinal cholesterol absorption.  相似文献   

12.
乳杆菌耐胆汁、降解结合胆盐和同化胆固醇能力的研究   总被引:7,自引:0,他引:7  
对8株植物乳杆菌的胆汁耐受力、降解结合胆盐能力以及同化胆固醇能力进行了研究。不同的菌株在添加了牛胆汁的MRS中生长速度具有明显差异,同化胆固醇能力也明显不同,而降解结合胆盐的能力没有明显区别。分析发现,菌株的胆汁耐受力和降解结合胆盐能力,胆汁耐受力和同化胆固醇能力,以及降解结合胆盐能力和同化胆固醇能力之间都没有明显的相关性。  相似文献   

13.
Synthesis of bile salts is regulated through negative feedback inhibition by bile salts returning to the liver. Individual bile salts have not been distinguished with regard to inhibitory potential. We assessed inhibition of bile salt synthesis by either cholate or its taurine conjugate in bile fistula rats. After allowing synthesis to maximize, baseline synthesis was determined by measuring bile salt output in four consecutive 6-hr periods. Next, sodium cholate (+[(14)C]cholate) or taurocholate (+[(14)C]taurocholate) was infused into the jugular vein for 36 hr and bile was collected in 6-hr aliquots. Hepatic flux of exogenous bile salt was determined by measuring output of radioactivity in bile divided by specific activity of the infusate. Synthesis was determined during the last four 6-hr periods of infusion by subtracting exogenous bile salt secretion from the total bile salt output. Thirteen studies using cholate and 13 using taurocholate were performed. Hepatic flux of infused bile salt varied from 1 to 12 micro mol/100 g per rat per hr. Percent suppression of synthesis varied directly with hepatic flux of exogenous bile salt for both cholate and taurocholate in a linear fashion (r = 0.66, P < 0.01 and r = 0.87, P < 0.0005, respectively). Slope of the taurocholate line was 7.82 (% suppression/ micro mol per 100 g per hr), while slope of the cholate line was 3.66 (P < 0.05), indicating that taurocholate was approximately twice as potent as cholate in suppression of synthesis. At fluxes of 10-12 micro mol/100 g per hr, taurocholate suppressed synthesis 84 +/- 8 (SEM) % while cholate suppressed synthesis only 42 +/- 12% (P < 0.02). The x-intercept of the taurocholate line was 0.65 ( micro mol/100 g per hr), while that of the cholate line was -1.01 (NS) suggesting that the threshold for initial suppression of synthesis did not differ for these two bile salts. We conclude that taurocholate is a more effective inhibitor of hepatic bile salt synthesis than cholate, and that intestinal deconjugation of bile salts may play a role in the regulation of synthesis.-Pries, J. M., A. Gustafson, D. Wiegand, and W. C. Duane. Taurocholate is more potent than cholate in suppression of bile salt synthesis in the rat.  相似文献   

14.
Unconjugated bilirubin (UCB) is almost insoluble in water at neutral pH, but appears in normal human gallbladder bile at concentrations up to 35 microM. We therefore determined whether conjugated bile salts could increase the dissolved concentration [( Bt]) of UCB over the pH range 3.0-11.0. Using crystalline UCB, [Bt] was higher with less ordered crystals, with increasing pH and bile salt concentration, and with taurocholate (TC) micelles compared to taurodehydrocholate (TDHC) dimers. Plots of [Bt] verus pH from pH 3.0-9.3 fit the equation, [Bt] = A(1 + K'1/[H]+ + K'1.K'2/[H+]2), where A = [Bt] at pH less than 4.0, and K'1 and K'2 are the two apparent ionization constants of UCB. Estimated pK'1 values in NaCl, TC, and TDHC were 6.8, 6.0, and 5.6, respectively; pK'2 was greater than or equal to 9.3 in each system. Acidification of disodium bilirubinate to pH less than 8.5 produced high, metastable [Bt] in 50 mM TC; this was absent in 0.15 M NaCl, and minor in 50 mM TDHC. In all solutions, maximum [Bt] of 60-65 mM was attained at pH greater than or equal to 10.5. This work helps explain the immense variation among reported [Bt] values, indicates that UCB monoanion predominates at the pH range of bile, and suggests that bile salt monomers, dimers, and micelles enhance the solubility of UCB in bile.  相似文献   

15.
The effects of sodium oleate infused into either the duodenum or the terminal ileum on bile and pancreatic secretion were examined in the conscious rat. Rats were prepared with cannulae draining pure bile and pancreatic juice separately, and with an ileal and two duodenal cannulae. A 40 mM taurocholate solution containing 7 mg/ml bovine trypsin was infused into the duodenum throughout the experiment to replace diverted bile-pancreatic juice to maintain the normal regulation of pancreatic secretion. The intraduodenal infusion of sodium oleate significantly increased pancreatic juice flow, protein, and bicarbonate outputs, whereas it did not affect bile secretion. Intravenous infusion of proglumide (300 mg/kg/hr) did not inhibit pancreatic secretion stimulated by intraduodenal infusion of sodium oleate. An intravenous infusion of atropine (100 micrograms/kg/hr) attenuated protein and fluid secretions but not that of bicarbonate in response to intraduodenal oleate. In contrast, the intraileal infusion of oleate had no effect on pancreatic secretion, whereas it decreased bile flow, bicarbonate, and bile salt outputs. In conclusion, sodium oleate introduced in the duodenum stimulates pancreatic secretion but oleate in the terminal ileum inhibits bile secretion.  相似文献   

16.
Spectrophotometric measurements of bilirubin-IX alpha in water and in aqueous/organic solvent mixtures at pH 10.0 as a function of bilirubin-IX alpha concentration (approx. 0.6--400 microM) are consistent with the formation of dimers (KD - 1.5 microM) in dilute (less than 10 microM) aqueous solution and further self-aggregation to multimers at higher concentrations. Added urea (to 10M) and increases in temperature (to 62 degrees C) obliterate the dimer-multimer transition at 10 microM, but added NaCl (to 0.30 M) promotes strong aggregation of dimers over a narrow concentration range, suggesting a 'micellization' phenomenon. Concentrations of dioxan or ethanol greater than 60% (v/v) in water were required to obtain the absorption spectrum of bilirubin-IX alpha monomers, suggesting that both hydrophobic and electrostatic (pi-orbital) interactions are involved in stabilizing the dimeric state in water. Micellar concentrations of sodium dodecyl sulphate induced spectrophotometric shifts in the dimer absorption spectrum of bilirubin-IX alpha consistent with progressive partitioning of bilirubin-IX alpha monomers into a relatively non-polar region of the micelles and allowed a deduction of the apparent critical micellar concentration that closely approximated the literature values. The pattern of bilirubin IX alpha association with bile salts is complex, since the absorption spectrum shifts hypsochromically below and bathochromically above the critical micellar concentration of the bile salts. Consistent with these observations, bilirubin IX alpha appears to bind to the polar face of bile salt monomers and to the polar perimeter of small bile salt micelles. At higher bile salt concentrations some-bilirubin-IX alpha monomers partition into the hydrophobic interior of the bile salt micelles. Our results suggest that under physiological conditions the natural conjugates of bilirubin-IX alpha may exhibit similar physical chemical properties in bile, in that dimers, highly aggregated multimers and bile salt-associated monomers may co-exist.  相似文献   

17.
Feedback regulation of bile acid biosynthesis in the rat   总被引:11,自引:0,他引:11  
The hepatic biosynthesis of bile salts in the rat has been shown to be controlled homeostatically by the quantity of bile salt returning to the liver via the portal circulation. The feedback mechanism was demonstrated in two kinds of experiments. In the first, rats with bile fistulas were infused intraduodenally with sodium taurocholate 12 hr after surgery. If the rate of infusion was greater than 10 mg per 100 g rat per hr, the increase in bile acid output normally observed in bile fistula rats was prevented. In the second type of experiment, the rats were infused with taurocholate 48-72 hr after biliary diversion, when bile acid output had reached a maximal value. Provided the rate of infusion exceeded 10 mg per 100 g rat per hr, bile acid secretion returned to the low levels observed in intact rats. Previous attempts to demonstrate the feedback control have been unsuccessful because too little bile salt was infused. The taurocholate pool of the experimental animals was measured as approximately 15 mg per 100 g rat; it was calculated from this and the above results that this pool circulated 10-13 times daily.  相似文献   

18.
1972. Bile and bile salts and exsheathment of the intestinal nematodes Trichostrongylus colubriformis and Nematodirus battus. International Journal for Parasitology, 2: 433–438. Exsheathment of T. colubriformis was potentiated at physiological levels of CO2 by bile and bile salts. Lamb bile and crude sodium taurocholate preparations produced the greatest increase in exsheathment while rabbit bile, sodium glycocholate and deoxycholate had less pronounced effects. Exsheathment in bile and taurocholate occurred at a pH above 4 and it is therefore suggested that infective larvae which fail to exsheath in the abomasum could well do so in the proximal part of the small intestine. Pure sodium taurocholate was found to greatly potentiate exsheathment of N. battus in vitro but this occurred at a pH below 3 and thus the action of this bile salt could not affect exsheathment in the host.  相似文献   

19.
Bile salt dependent flow and electrolyte secretion in response to two bile salts were studied in awake rabbits. It was found that sodium glycodeoxycholate had a much greater choleretic and cholioneretic efficiency than sodium taurocholate. The effect of the bile salts on flow and electrolyte secretion was not linear across the range of bile salt secretion rates studied. When amiloride was administered significant decreases in choleretic and cholioneretic efficiencies occurred, but furosemide had no effect. It is concluded that bile salts stimulate electrolyte transport via amiloride inhibitable cellular processes, and that this electrolyte transport is in part responsible for bile salt dependent bile flow.  相似文献   

20.
The emulsion phase formed within the stomach and duodenum during digestion of a fatty meal has been modelled using two physiological surfactants, the phospholipid L-alpha-phosphatidylcholine (PC) and the bile salt sodium taurocholate (NaT). Upon dilution of the phospholipid stabilised emulsions with a solution of NaT the bile salt became incorporated into the oil/water interface imparting a negative charge to the droplet surface. The magnitude of the droplet microelectrophoretic mobility for the mixed PC and NaT system was 47% of that found for emulsion droplets stabilised by NaT alone. But the electrostatic repulsion between droplets was not sufficient to account for the observed improvement in emulsion stability to coalescence. It is suggested that a residual liquid crystalline phospholipid interface is present imparting a significant steric component to the stabilisation of the emulsions droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号