首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Structures of substrate bound human angiogenin complexes have been obtained for the first time by computer modeling. The dinucleotides CpA and UpA have been docked onto human angiogenin using a systematic grid search procedure in torsion and Eulerian angle space. The docking was guided throughout by the similarity of angiogenin-substrate interactions with interactions of RNase A and its substrate. The models were subjected to 1 nanosecond of molecular dynamics to access their stability. Structures extracted from MD simulations were refined by simulated annealing. Stable hydrogen bonds that bridged protein and ligand residues during the MD simulations were taken as restraints for simulated annealing. Our analysis on the MD structures and annealed models explains the substrate specificity of human angiogenin and is in agreement with experimental results. This study also predicts the B2 binding site residues of angiogenin, for which no experimental information is available so far. In the case of one of the substrates, CpA, we have also identified the presence of a water molecule that invariantly bridges the B2 base with the protein. We have compared our results to the RNase A-substrate complex and highlight the similarities and differences.  相似文献   

3.
Molecular dynamics simulations of Lipid A and its natural precursor Lipid IVA from E.coli have been carried out free in solution, bound to the myeliod differentiation protein 2 (MD2) and in the complex of MD2 with the toll like receptor 4 (TLR4). In addition, simulations of the ligand free MD2 and MD2‐TLR4 complex were performed. A structural and energetic characterization of the bound and unbound states of Lipid A/IVA was generated. As the crystal structures depict, the main driving force for MD2‐Lipid A/IVA are the hydrophobic interactions between the aliphatic tails and the MD2 cavity. The charged phosphate groups do strongly interact with positively charged residues, located at the surface of MD2. However, they are not essential for keeping the lipids in the cavity, indicating a more prominent role in binding recognition and ionic interactions with TLR4 at the MD2/TLR4 interface. Interestingly, in the absence of any ligand MD2 rapidly closes, blocking the binding cavity. The presence of TLR4, though changing the dynamics, was not able to impede the aforementioned closing event. We hypothesize that fluctuations of the H1 region are essential for this phenomenon, and it is plausible that an equilibrium between the open and closed states exists, although the lengths of our simulations are not sufficient to encompass the reversible process. The MD2/Lipid A‐TLR4 complex simulations show that the presence of the ligand energetically stabilizes the complex relative to the ligand‐free structures, indicating cooperativity in the binding process. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Bovine pancreatic ribonuclease (RNase A) forms two 3-dimensional domain-swapped dimers with different quaternary structures. One dimer is characterized by the swapping of the C-terminal region (C-Dimer) and presents a rather loose structure. The other dimer (N-Dimer) exhibits a very compact structure with exchange of the N-terminal helix. Here we report the results of a molecular dynamics/essential dynamics (MD/ED) study carried out on the N-Dimer. This investigation, which represents the first MD/ED analysis on a three-dimensional domain-swapped enzyme, provides information on the dynamic properties of the active site residues as well as on the global motions of the dimer subunits. In particular, the analysis of the flexibility of the active site residues agrees well with recent crystallographic and site-directed mutagenesis studies on monomeric RNase A, thus indicating that domain swapping does not affect the dynamics of the active sites. A slight but significant rearrangement of N-Dimer quaternary structure, favored by the formation of additional hydrogen bonds at subunit interface, has been observed during the MD simulation. The analysis of collective movements reveals that each subunit of the dimer retains the functional breathing motion observed for RNase A. Interestingly, the breathing motion of the two subunits is dynamically coupled, as they open and close in phase. These correlated motions indicate the presence of active site intercommunications in this dimer. On these bases, we propose a speculative mechanism that may explain negative cooperativity in systems preserving structural symmetry during the allosteric transitions.  相似文献   

5.
Angiogenin is a protein belonging to the superfamily of RNase A. The RNase activity of this protein is essential for its angiogenic activity. Although members of the RNase A family carry out RNase activity, they differ markedly in their strength and specificity. In this paper, we address the problem of higher specificity of angiogenin towards cytosine against uracil in the first base binding position. We have carried out extensive nano-second level molecular dynamics(MD) computer simulations on the native bovine angiogenin and on the CMP and UMP complexes of this protein in aqueous medium with explicit molecular solvent. The structures thus generated were subjected to a rigorous free energy component analysis to arrive at a plausible molecular thermodynamic explanation for the substrate specificity of angiogenin.  相似文献   

6.
The HIV‐1 integrase is an attractive target for the therapeutics development against AIDS, as no host homologue of this protein has been identified. The integrase strand transfer inhibitors (INSTIs), including raltegravir, specifically target the second catalytic step of the integration process by binding to the DDE motif of the catalytic site and coordinating Mg2+ ions. Recent X‐ray crystallographic structures of the integrase/DNA complex from prototype foamy virus allowed to investigate the role of the different partners (integrase, DNA, Mg2+ ions, raltegravir) in the complex stability using molecular dynamics (MD) simulations. The presence of Mg2+ ions is found to be essential for the stability, whereas the simultaneous presence of raltegravir and Mg2+ ions has a destabilizing influence. A homology model of HIV‐1 integrase was built on the basis of the X‐ray crystallographic information, and protein marker residues for the ligand binding were detected by clustering the docking poses of known HIV‐1 integrase inhibitors on the model. Interestingly, we had already identified some of these residues to be involved in HIV‐1 resistance mutations and in the stabilization of the catalytic site during the MD simulations. Classification of protein conformations along MD simulations, as well as of ligand docking poses, was performed by using an original learning method, based on self‐organizing maps. This allows us to perform a more in‐depth investigation of the free‐energy basins populated by the complex in MD simulations on the one hand, and a straightforward classification of ligands according to their binding residues on the other hand. Proteins 2014; 82:466–478. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The human eosinophil cationic protein (ECP), also known as RNase 3, is an eosinophil secretion protein that is involved in innate immunity and displays antipathogen and proinflammatory activities. ECP has a high binding affinity for heterosaccharides, such as bacterial lipopolysaccharides and heparan sulfate found in the glycocalix of eukaryotic cells. We have crystallized ECP in complex with sulfate anions in a new monoclinic crystal form. In this form, the active site groove is exposed, providing an alternative model for ligand binding studies. By exploring the protein-sulfate complex, we have defined the sulfate binding site architecture. Three main sites (S1-S3) are located in the protein active site; S1 and S2 overlap with the phosphate binding sites involved in RNase nucleotide recognition. A new site (S3) that is unique to ECP is one of the key anchoring points for sulfated ligands. Arg 1 and Arg 7 in S3, together with Arg 34 and Arg 36 in S1, form the main basic clusters that assist in the recognition of ligand anionic groups. The location of additional sulfate bound molecules, some of which contribute to the crystal packing, may mimic the binding to extended anionic polymers. In conclusion, the structural data define a binding pattern for the recognition of sulfated molecules that can modulate the role of ECP in innate immunity. The results reveal the structural basis for the high affinity of ECP for glycosaminoglycans and can assist in structure-based drug design of inhibitors of the protein cytotoxicity to host tissues during inflammation.  相似文献   

8.
The RNA subunit of ribonuclease P (RNase P RNA) is a catalytic RNA that cleaves precursor tRNAs to generate mature tRNA 5' ends. Little is known concerning the identity and arrangement of functional groups that constitute the active site of this ribozyme. We have used an RNase P RNA-substrate conjugate that undergoes rapid, accurate, and efficient self-cleavage in vitro to probe, by phosphorothioate modification-interference, functional groups required for catalysis. We identify four phosphate oxygens where substitution by sulfur significantly reduces the catalytic rate (50-200-fold). Interference at one site was partially rescued in the presence of manganese, suggesting a direct involvement in binding divalent metal ion cofactors required for catalysis. All sites are located in conserved sequence and secondary structure, and positioned adjacent to the substrate phosphate in a tertiary structure model of the ribozyme-substrate complex. The spatial arrangement of phosphorothioate-sensitive sites in RNase P RNA was found to resemble the distribution of analogous positions in the secondary and potential tertiary structures of other large catalytic RNAs.  相似文献   

9.
A model for the complex between E. coli RNase HI and the DNA/RNA hybrid (previously refined by molecular dynamics simulations) was used to determine the impact of the internucleotide linkage modifications (either 3-O-CH2-P-O-5' or 3-O-P-CH2-O-5) on the ability of the modified-DNA/RNA hybrid to create a complex with the protein. Modified internucleotide linkages were incorporated systematically at different positions close to the 3-end of the DNA strand to interfere with the DNA binding site of RNase H. Altogether, six trajectories were produced (length 1.5ns). Mutual hydrogen bonds connecting both strands of the nucleic acids hybrid, DNA with RNase H, RNA with RNase H, and the scissile bond with the Mg++. 4H2O chelate complex (bound in the active site) were analyzed in detaiL Many residues were involved in binding of the DNA (Arg88, Asn84, Trp85, Trp104, Tyr73, Lys99, Asn100, Thr43, and Asn 16) and RNA (Gln76, Gln72, Tyr73, Lys122, Glu48, Asn44, and Cys13) strand to the substrate-binding site of the RNase H enzyme. The most remarkable disturbance of the hydrogen bonding net was observed for structures with modified internucleotide linkages positioned in a way to interact with the Trp104, Tyr73, Lys99, and Asn100 residues (situated in the middle of the DNA binding site, where a cluster of Trp residues forms a rigid core of the protein structure).  相似文献   

10.
Two classes of RNase H hydrolyze RNA of RNA/DNA hybrids. In contrast to RNase H1 that requires four ribonucleotides for cleavage, RNase H2 can nick duplex DNAs containing a single ribonucleotide, suggesting different in vivo substrates. We report here the crystal structures of a type 2 RNase H in complex with substrates containing a (5')RNA-DNA(3') junction. They revealed a unique mechanism of recognition and substrate-assisted cleavage. A conserved tyrosine residue distorts the nucleic acid at the junction, allowing the substrate to function in catalysis by participating in coordination of the active site metal ion. The biochemical and structural properties of RNase H2 explain the preference of the enzyme for junction substrates and establish the structural and mechanistic differences with RNase H1. Junction recognition is important for the removal of RNA embedded in DNA and may play an important role in DNA replication and repair.  相似文献   

11.
Precursor-messenger RNA (pre-mRNA) splicing encompasses two sequential transesterification reactions in distinct active sites of the spliceosome that are transiently established by the interplay of small nuclear (sn) RNAs and spliceosomal proteins. Protein Prp8 is an active site component but the molecular mechanisms, by which it might facilitate splicing catalysis, are unknown. We have determined crystal structures of corresponding portions of yeast and human Prp8 that interact with functional regions of the pre-mRNA, revealing a phylogenetically conserved RNase H fold, augmented by Prp8-specific elements. Comparisons to RNase H-substrate complexes suggested how an RNA encompassing a 5'-splice site (SS) could bind relative to Prp8 residues, which on mutation, suppress splice defects in pre-mRNAs and snRNAs. A truncated RNase H-like active centre lies next to a known contact region of the 5'SS and directed mutagenesis confirmed that this centre is a functional hotspot. These data suggest that Prp8 employs an RNase H domain to help assemble and stabilize the spliceosomal catalytic core, coordinate the activities of other splicing factors and possibly participate in chemical catalysis of splicing.  相似文献   

12.
Park C  Schultz LW  Raines RT 《Biochemistry》2001,40(16):4949-4956
His12 and His119 are critical for catalysis of RNA cleavage by ribonuclease A (RNase A). Substitution of either residue with an alanine decreases the value of k(cat)/K(M) by more than 10(4)-fold. His12 and His119 are proximal to the scissile phosphoryl group of an RNA substrate in enzyme-substrate complexes. Here, the role of these active site histidines in RNA binding was investigated by monitoring the effect of mutagenesis and pH on the stability of enzyme-nucleic acid complexes. X-ray diffraction analysis of the H12A and H119A variants at a resolution of 1.7 and 1.8 A, respectively, shows that the amino acid substitutions do not perturb the overall structure of the variants. Isothermal titration calorimetric studies on the complexation of wild-type RNase A and the variants with 3'-UMP at pH 6.0 show that His12 and His119 contribute 1.4 and 1.1 kcal/mol to complex stability, respectively. Determination of the stability of the complex of wild-type RNase A and 6-carboxyfluorescein approximately d(AUAA) at varying pHs by fluorescence anisotropy shows that the stability increases by 2.4 kcal/mol as the pH decreases from 8.0 to 4.0. At pH 4.0, replacing His12 with an alanine residue decreases the stability of the complex with 6-carboxyfluorescein approximately d(AUAA) by 2.3 kcal/mol. Together, these structural and thermodynamic data provide the first thorough analysis of the contribution of histidine residues to nucleic acid binding.  相似文献   

13.
RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. Previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNase S and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model. According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.  相似文献   

14.
The switch 1 region of myosin forms a lid over the nucleotide phosphates as part of a structure known as the phosphate-tube. The homologous region in kinesin-family motors is more open, not interacting with the nucleotide. We used molecular dynamics (MD) simulations to examine a possible displacement of switch 1 of the microtubule motor, ncd, from the open conformation to the closed conformation seen in myosin. MD simulations were done of both the open and the closed conformations, with either MgADP or MgATP at the active site. All MD structures were stable at 300 K for 500 ps, implying that the open and closed conformers all represented local minima on a global free energy surface. Free energy calculations indicated that the open structure was energetically favored with MgADP at the active site, suggesting why only the open structure has been captured in crystallographic work. With MgATP, the closed and open structures had roughly equal energies. Simulated annealing MD showed the transformation from the closed phosphate-tube ncd structure to an open configuration. The MD simulations also showed that the coordination of switch 1 to the nucleotide dramatically affected the position of both the bound nucleotide and switch 2 and that a closed phosphate-tube may be necessary for catalysis.  相似文献   

15.
Mu Y  Stock G 《Biophysical journal》2006,90(2):391-399
Molecular dynamics simulations of the binding of the heterochiral tripeptide KkN to the transactivation responsive (TAR) RNA of HIV-1 is presented, using an all-atom force field with explicit water. To obtain starting structures for the TAR-KkN complex, semirigid docking calculations were performed that employ an NMR structure of free TAR RNA. The molecular dynamics simulations show that the starting structures in which KkN binds to the major groove of TAR (as it is the case for the Tat-TAR complex of HIV-1) are unstable. On the other hand, the minor-groove starting structures are found to lead to several binding modes, which are stabilized by a complex interplay of stacking, hydrogen bonding, and electrostatic interactions. Although the ligand does not occupy the binding position of Tat protein, it is shown to hinder the interhelical motion of free TAR RNA. The latter is presumably necessary to achieve the conformational change of TAR RNA to bind Tat protein. Considering the time evolution of the trajectories, the binding process is found to be ligand-induced and cooperative. That is, the conformational rearrangement only occurs in the presence of the ligand and the concerted motion of the ligand and a large part of the RNA binding site is necessary to achieve the final low-energy binding state.  相似文献   

16.
Rhomboid proteases regulate key cellular pathways, but their biochemical mechanism including how water is made available to the membrane-immersed active site remains ambiguous. We performed four prolonged molecular dynamics simulations initiated from both gate-open and gate-closed states of Escherichia coli rhomboid GlpG in a phospholipid bilayer. GlpG was notably stable in both gating states, experiencing similar tilt and local membrane thinning, with no observable gating transitions, highlighting that gating is rate-limiting. Analysis of dynamics revealed rapid loss of crystallographic waters from the active site, but retention of a water cluster within a site formed by His141, Ser181, Ser185, and/or Gln189. Experimental interrogation of 14 engineered mutants revealed an essential role for at least Gln189 and Ser185 in catalysis with no effect on structural stability. Our studies indicate that spontaneous water supply to the intramembrane active site of rhomboid proteases is rare, but its availability for catalysis is ensured by an unanticipated active site element, the water-retention site.  相似文献   

17.
The mechanism of action of inosine-adenosine-guanosine nucleoside hydrolase (IAG-NH) has been investigated by long-term molecular dynamics (MD) simulation in TIP3P water using stochastic boundary conditions. Special attention has been given to the role of leaving group pocket residues and conformation of the bound substrate at the active site of IAG-NH. We also describe the positioning of the residues of an important flexible loop at the active site, which was previously unobservable by X-ray crystallography due to high B-factors. Five MD simulations have been performed with the Enzyme x Substrate complexes: Enzyme x anti-Adenosine with Asp40-COOH [E(40H) x Ade(a)], Enzyme x anti-Adenosine with Asp40-COO- [E(40) x Ade(a)], Enzyme x syn-Adenosine with Asp40-COOH [E(40H) x Ade(s)], Enzyme x syn-Adenosine with Asp40-COO- [E(40) x Ade(s)], and Enzyme x anti-Inosine with Asp40-COO- [E(40) x Ino(a)]. Overall, the structures generated from the MD simulation of E(40H) x Ade(s) preserve the catalytically important hydrogen bonds as well as electrostatic and hydrophobic interactions to provide a plausible catalytic structure. When deprotonated Asp40 (Asp4-COO-) is present, the active site is open to water solvent which interferes with the base stacking between Trp83 and nucleobase. A calculation using Poisson-Boltzmann equation module supports that Asp40 indeed has an elevated pK(app). Solvent accessible surface area (SASA) calculations on all the five MD structures shows that systems with protonated Asp40, namely, E(40H) x Ade(a) and E(40H) x Ade(s), have zero SASA. It is found that a water molecule is hydrogen-bonded to the N7 of the nucleobase and is probably the essential general acid to protonate the departing nucleobase anion. The N7-bonded water is in turn hydrogen-bonded to waters in a channel, held in place by the residues of the flexible loop, Tyr257, His247, and Cys245. Using normal-mode analysis with elastic network model, we find that the flexible loop explores a conformational space much larger than in the MD trajectory, leading to a "gating"-like motion with respect to the active site.  相似文献   

18.
Molecular dynamics (MD) simulations were carried out to compare the free and bound structures of wild type U1A protein with several Phe56 mutant U1A proteins that bind the target stem loop 2 (SL2) RNA with a range of affinities. The simulations indicate the free U1A protein is more flexible than the U1A-RNA complex for both wild type and Phe56 mutant systems. A complete analysis of the hydrogen-bonding (HB) and non-bonded (VDW) interactions over the course of the MD simulations suggested that changes in the interactions in the free U1A protein caused by the Phe56Ala and Phe56Leu mutations may stabilize the helical character in loop 3, and contribute to the weak binding of these proteins to SL2 RNA. Compared with wild type, changes in HB and VDW interactions in Phe56 mutants of the free U1A protein are global, and include differences in β-sheet, loop 1 and loop 3 interactions. In the U1A-RNA complex, the Phe56Ala mutation leads to a series of differences in interactions that resonate through the complex, while the Phe56Leu and Phe56Trp mutations cause local differences around the site of mutation. The long-range networks of interactions identified in the simulations suggest that direct interactions and dynamic processes in both the free and bound forms contribute to complex stability.  相似文献   

19.
Enzymes from thermophiles are poorly active at temperatures at which their mesophilic homologs exhibit high activity and attain corresponding active states at high temperatures. In this study, comparative molecular dynamics (MD) simulations, supplemented by normal mode analysis, have been performed on an enzyme Adenylosuccinate synthetase (AdSS) from E. coli (mesophilic) and P. horikoshii (thermophilic) systems to understand the effects of loop dynamics on thermal stability of AdSS. In mesophilic AdSS, both ligand binding and catalysis are facilitated through the coordinated movement of five loops on the protein. The simulation results suggest that thermophilic P. horikoshii preserves structure and catalytic function at high temperatures by using the movement of only a subset of loops (two out of five) for ligand binding and catalysis unlike its mesophilic counterpart in E. coli. The pre-arrangement of the catalytic residues in P. horikoshii is well-preserved and salt bridges remain stable at high temperature (363K). The simulations suggest a general mechanism (including pre-arrangement of catalytic residues, increased polar residue content, stable salt bridges, increased rigidity, and fewer loop movements) used by thermophilic enzymes to preserve structure and be catalytically active at elevated temperatures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号