首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
Efficient repair of DNA double-strand breaks depends on the intact signaling cascade, comprising molecules involved in DNA damage signal pathways and checkpoints. Budding yeast Rad9 (scRad9) is required for activation of scRad53 (mammalian homolog Chk2) and transduction of the signal further downstream in this pathway. In the search for a mammalian homolog, three proteins in the human data base, including BRCA1, 53BP1, and nuclear factor with BRCT domains protein 1 (NFBD1), were found to share significant homology with the BRCT motifs of scRad9. Because BRCA1 and 53BP1 are involved in DNA damage responses, a similar role for NFBD1 was tested. We show that NFBD1 is a 250-kDa nuclear protein containing a forkhead-associated motif at its N terminus, two BRCT motifs at its C terminus, and 13 internal repetitions of a 41-amino acid sequence. Five minutes after gamma-irradiation, NFBD1 formed nuclear foci that colocalized with the phosphorylated form of H2AX and Chk2, two phosphorylation events known to be involved in early DNA damage response. NFBD1 foci are also detected in response to camptothecin, etoposide, and methylmethanesulfonate treatments. Deletion of the forkhead-associated motif or the internal repeats of NFBD1 has no effect on DNA damage-induced NFBD1 foci formation. Conversely, deletion of the BRCT motifs abrogates damage-induced NFBD1 foci. Ectopic expression of the BRCT motifs reduced damage-induced NFBD1 foci and compromised phosphorylated Chk2- and phosphorylated H2AX-containing foci. These results suggest that NFBD1, like BRCA1 and 53BP1, participates in the early response to DNA damage.  相似文献   

2.
3.
Stucki M  Jackson SP 《DNA Repair》2004,3(8-9):953-957
The protein MDC1/NFBD1 contains a forkhead-associated (FHA) domain and two BRCA1 carboxyl-terminal (BRCT) domains. It interacts with several proteins involved in DNA damage repair and checkpoint signalling, and is phosphorylated in response to DNA damage and during mitosis. Upon treatment of cultured human cells with DNA damaging agents, MDC1/NFBD1 translocates to sites of DNA lesions, where it collaborates with other proteins and with phosphorylated histone H2AX to mediate the accumulation of checkpoint and repair factors into nuclear foci. Down-regulation of MDC1/NFBD1 expression levels by small interfering RNA (siRNA) renders cells hyper-sensitive to DNA damaging agents and leads to defects in cell cycle checkpoint activation and apoptosis. Thus, MDC1/NFBD1 appears to be a key regulator of the DNA damage response in mammalian cells.  相似文献   

4.
NFBD1/MDC1, 53BP1, and BRCA1 are DNA damage checkpoint proteins with twin BRCT domains. In order to determine if they have redundant roles in responses to ionizing radiation, we used siRNA and shRNA to deplete NFBD1, 53BP1, and BRCA1 in single, double, and triple combinations. These analyses were performed in early passage human foreskin fibroblasts so that checkpoint responses could be assessed in a normal genetic background. We report that NFBD1, 53BP1, and BRCA1 have both unique and redundant functions in radiation-induced phosphorylation and localization events in the ATM-Chk2 pathway. 53BP1, but not NFBD1 and BRCA1, mediates ionizing radiation-induced ATM S1981 autophosphorylation. In contrast, all three mediators collaborate to promote IR-induced Chk2 T68 phosphorylation. NFBD1 and 53BP1, but not BRCA1, work together to mediate pATMS1981, pChk2T68, and NBS1 ionizing radiation induced foci (IRIF). However, the relative importance of NFBD1 and 53BP1 in IRIF formation differ. We also determined the interdependence among mediators in IRIF recruitment. We extend previous findings in cancer cells and mouse cells that NFBD1 is upstream of 53BP1 and BRCA1 to primary human cells. Furthermore, NFBD1 promotes BRCA1 IRIF through both 53BP1-dependent and 53BP1-independent mechanisms.  相似文献   

5.
6.
Bloom's syndrome is a rare autosomal recessive genetic disorder characterized by chromosomal aberrations, genetic instability, and cancer predisposition, all of which may be the result of abnormal signal transduction during DNA damage recognition. Here, we show that BLM is an intermediate responder to stalled DNA replication forks. BLM colocalized and physically interacted with the DNA damage response proteins 53BP1 and H2AX. Although BLM facilitated physical interaction between p53 and 53BP1, 53BP1 was required for efficient accumulation of both BLM and p53 at the sites of stalled replication. The accumulation of BLM/53BP1 foci and the physical interaction between them was independent of gamma-H2AX. The active Chk1 kinase was essential for both the accurate focal colocalization of 53BP1 with BLM and the consequent stabilization of BLM. Once the ATR/Chk1- and 53BP1-mediated signal from replicational stress is received, BLM functions in multiple downstream repair processes, thereby fulfilling its role as a caretaker tumor suppressor.  相似文献   

7.
8.
Histone variant H2AX phosphorylation in response to DNA damage is the major signal for recruitment of DNA-damage-response proteins to regions of damaged chromatin. Loss of H2AX causes radiosensitivity, genome instability, and DNA double-strand-break repair defects, yet the mechanisms underlying these phenotypes remain obscure. Here, we demonstrate that mammalian MDC1/NFBD1 directly binds to phospho-H2AX (gammaH2AX) by specifically interacting with the phosphoepitope at the gammaH2AX carboxyl terminus. Moreover, through a combination of biochemical, cell-biological, and X-ray crystallographic approaches, we reveal the molecular details of the MDC1/NFBD1-gammaH2AX complex. These data provide compelling evidence that the MDC1/NFBD1 BRCT repeat domain is the major mediator of gammaH2AX recognition following DNA damage. We further show that MDC1/NFBD1-gammaH2AX complex formation regulates H2AX phosphorylation and is required for normal radioresistance and efficient accumulation of DNA-damage-response proteins on damaged chromatin. Thus, binding of MDC1/NFBD1 to gammaH2AX plays a central role in the mammalian response to DNA damage.  相似文献   

9.
10.
The DNA damage response depends on the concerted activity of protein serine/threonine kinases and modular phosphoserine/threonine-binding domains to relay the damage signal and recruit repair proteins. The PIKK family of protein kinases, which includes ATM/ATR/DNA-PK, preferentially phosphorylate Ser-Gln sites, while their basophilic downstream effecter kinases, Chk1/Chk2/MK2 preferentially phosphorylate hydrophobic-X-Arg-X-X-Ser/Thr-hydrophobic sites. A subset of tandem BRCT domains act as phosphopeptide binding modules that bind to ATM/ATR/DNA-PK substrates after DNA damage. Conversely, 14-3-3 proteins interact with substrates of Chk1/Chk2/MK2. FHA domains have been shown to interact with substrates of ATM/ATR/DNA-PK and CK2. In this review we consider how substrate phsophorylation together with BRCT domains, FHA domains and 14-3-3 proteins function to regulate ionizing radiation-induced nuclear foci and help to establish the G2/M checkpoint. We discuss the role of MDC1 a molecular scaffold that recruits early proteins to foci, such as NBS1 and RNF8, through distinct phosphodependent interactions. In addition, we consider the role of 14-3-3 proteins and the Chk2 FHA domain in initiating and maintaining cell cycle arrest.  相似文献   

11.
Mammalian ATR and ATM checkpoint kinases modulate chromatin structures near DNA breaks by phosphorylating a serine residue in the carboxy-terminal tail SQE motif of histone H2AX. Histone H2A is similarly regulated in Saccharomyces cerevisiae. The phosphorylated forms of H2AX and H2A, known as gamma-H2AX and gamma-H2A, are thought to be important for DNA repair, although their evolutionarily conserved roles are unknown. Here, we investigate gamma-H2A in the fission yeast Schizosaccharomyces pombe. We show that formation of gamma-H2A redundantly requires the ATR/ATM-related kinases Rad3 and Tel1. Mutation of the SQE motif to AQE (H2A-AQE) in the two histone H2A genes caused sensitivity to a wide range of genotoxic agents, increased spontaneous DNA damage, and impaired checkpoint maintenance. The H2A-AQE mutations displayed a striking synergistic interaction with rad22Delta (Rad52 homolog) in ionizing radiation (IR) survival. These phenotypes correlated with defective phosphorylation of the checkpoint proteins Crb2 and Chk1 and a failure to recruit large amounts of Crb2 to damaged DNA. Surprisingly, the H2A-AQE mutations substantially suppressed the IR hypersensitivity of crb2Delta cells by a mechanism that required the RecQ-like DNA helicase Rqh1. We propose that gamma-H2A modulates checkpoint and DNA repair through large-scale recruitment of Crb2 to damaged DNA. This function correlates with evidence that gamma-H2AX regulates recruitment of several BRCA1 carboxyl terminus domain-containing proteins (NBS1, 53BP1, MDC1/NFBD1, and BRCA1) in mammals.  相似文献   

12.
DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1   总被引:1,自引:0,他引:1  
Activation of the ataxia telangiectasia mutated (ATM) kinase triggers diverse cellular responses to ionizing radiation (IR), including the initiation of cell cycle checkpoints. Histone H2AX, p53 binding-protein 1 (53BP1) and Chk2 are targets of ATM-mediated phosphorylation, but little is known about their roles in signalling the presence of DNA damage. Here, we show that mice lacking either H2AX or 53BP1, but not Chk2, manifest a G2-M checkpoint defect close to that observed in ATM(-/-) cells after exposure to low, but not high, doses of IR. Moreover, H2AX regulates the ability of 53BP1 to efficiently accumulate into IR-induced foci. We propose that at threshold levels of DNA damage, H2AX-mediated concentration of 53BP1 at double-strand breaks is essential for the amplification of signals that might otherwise be insufficient to prevent entry of damaged cells into mitosis.  相似文献   

13.
BRCA1 is an important mediator of the DNA damage response pathway. Previous studies have identified a number of proteins that associate with BRCA1 at nuclear foci after ionizing radiation (IR)-induced DNA damage. However, the co-localization patterns of BRCA1 and various DNA damage response proteins have not yet been systematically quantified and compared within the same experimental system. In this study, a new inducible human cell line was established to allow unambiguous detection of YFP–BRCA1 at nuclear foci. Quantitative 2-D microscopic analysis was performed to compare the intranuclear co-localization of YFP–BRCA1 with 10 cellular proteins and 4 cellular domains before and after IR. Intriguingly, YFP–BRCA1 displayed significantly better focal co-localization with BARD1, RAP80 and Abraxas than with the upstream foci-initiating proteins γH2AX and MDC1. In contrast to previous reports, we found that the co-localization between YFP–BRCA1 and 53BP1 foci was surprisingly weak. Quantitative analyses of 3-D confocal images showed that ~ 60% of 53BP1 foci were unrelated to YFP–BRCA1 foci, ~ 35% of foci were abutting and only ~ 5% of foci co-localized. The YFP–BRCA1 and 53BP1 nuclear foci were distinctively separated within the first 3 h after IR. In addition, in situ nuclear retention analysis revealed YFP–BRCA1 and BARD1 are less mobile than 53BP1 at IR-induced nuclear foci. Our findings indicate that BRCA1–BARD1 and 53BP1 are proximal but not overlapping at DNA break sites and are consistent with recent evidence for distinct roles of these proteins in the DNA damage response pathway.  相似文献   

14.
15.
In response to DNA damage, NFBD1/MDC1 induces the accumulation of DNA repair machinery such as MRN complex at the sites of damaged DNA to form nuclear foci. In this study, we found that NFBD1 directly interacts with MDM2 and increases its stability. During adriamycin (ADR)-mediated apoptosis, expression levels of NFBD1 reduced in association with the down-regulation of MDM2. Enforced expression of NFBD1 resulted in a significant stabilization of MDM2. Consistent with these observations, siRNA-mediated knockdown of the endogenous NFBD1 decreased the amounts of the endogenous MDM2. Immunoprecipitation and in vitro pull-down assays demonstrated that NFBD1 interacts with MDM2 through its COOH-terminal BRCT domains. In accordance with our recent results, enforced expression of NFBD1 rendered cells resistant to DNA damage. Similar results were also obtained in cells expressing exogenous MDM2. Taken together, our present findings suggest that NFBD1-mediated stabilization contributes to cell survival in response to DNA damage.  相似文献   

16.
17.
Microcephalin (MCPH1) is one of the causative genes for the autosomal recessive disorder, primary microcephaly, characterized by dramatic reduction in brain size and mental retardation. MCPH1 also functions in the DNA damage response, participating in cell cycle checkpoint control. However, how MCPH1 is regulated in the DNA damage response still remains unknown. Here we report that the ability of MCPH1 to localize to the sites of DNA double-strand breaks depends on its C-terminal tandem BRCT domains. Although MCPH1 foci formation depends on H2AX phosphorylation after DNA damage, it can occur independently of MDC1. We also show that MCPH1 binds to a phospho-H2AX peptide in vitro with an affinity similar to that of MDC1, and overexpression of wild type, but not C-BRCT mutants of MCPH1, can interfere with the foci formation of MDC1 and 53BP1. Collectively, our data suggest MCPH1 is recruited to double-strand breaks via its interaction with gammaH2AX, which is mediated by MCPH1 C-terminal BRCT domains. These observations support that MCPH1 acts early in DNA damage responsive pathways.  相似文献   

18.
MDC1 (NFBD1) and 53BP1 are critical mediators of the mammalian DNA damage response (DDR) at nuclear foci. Here we show by quantitative imaging assays that MDC1 and 53BP1 are similar in total copy number (~1200 copies per focus), but differ substantially in dynamics at both replication-associated nuclear bodies in normal cells and DNA repair foci in ionizing radiation (IR)-damaged cells. The majority of MDC1 (~80%) is extremely mobile and under continuous exchange, with only a small fraction (~20%) remaining immobile at foci irrespective of IR treatment. By contrast, 53BP1 has a smaller mobile fraction (~35%) and a larger immobile fraction (~65%) at nuclear bodies, and becomes more dynamic (~20% increase in mobile pool) upon IR-induced DNA damage. More specifically, the dynamics of 53BP1 is dependent on a minimal foci-targeting region (1231-1709), and differentially regulated by its N-terminus (1-1231) and C-terminal tBRCT domain (1709-1972). Furthermore, MDC1 knockdown, or disruption of 53BP1-MDC1 interaction, reduced the number of 53BP1 molecules at foci by ~60%, but only modestly affected 53BP1 retention. This novel in vivo evidence reveals distinct dynamics of MDC1 and 53BP1 at different types of nuclear structures, and shows that MDC1 directly recruits and retains a subset of 53BP1 for DNA repair.  相似文献   

19.
DNA damage tumor suppressor genes and genomic instability   总被引:9,自引:0,他引:9  
Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and the development of cancer in multicellular organisms. The protein kinases ATM and ATR, as well as their downstream substrates Chk1 and Chk2, are central players in checkpoint activation in response to DNA damage. Histone H2AX, ATRIP, as well as the BRCT-motif-containing molecules 53BP1, MDC1, and BRCA1 function as molecular adapters or mediators in the recruitment of ATM or ATR and their targets to sites of DNA damage. The increased chromosomal instability and tumor susceptibility apparent in mutant mice deficient in both p53 and either histone H2AX or proteins that contribute to the nonhomologous end-joining mechanism of DNA repair indicate that DNA damage checkpoints play a pivotal role in tumor suppression.  相似文献   

20.
The maintenance of genome stability requires efficient DNA double-stranded break (DSB) repair mediated by the phosphorylation of multiple histone H2AX molecules near the break sites. The phosphorylated H2AX (γ-H2AX) molecules form foci covering many megabases of chromatin. The formation of g-H2AX foci is critical for efficient DNA damage response (DDR) and for the maintenance of genome stability, however, the mechanisms of protein organization in foci is largely unknown. To investigate the nature of γ-H2AX foci formation, we analyzed the distribution of γ-H2AX and other DDR proteins at DSB sites using a variety of techniques to visualize, expand and partially disrupt chromatin. We report here that γ-H2AX foci change composition during the cell cycle, with proteins 53BP1, NBS1 and MRE11 dissociating from foci in G2 and mitosis to return at the beginning of the following G1. In contrast, MDC1 remained colocalized with g-H2AX during mitosis. In addition, while γ-H2AX was found to span large domains flanking DSB sites, 53BP1 and NBS1 were more localized and MDC1 colocalized in doublets in foci. H2AX and MDC1 were found to be involved in chromatin relaxation after DSB formation. Our data demonstrates that the DSB repair focus is a heterogeneous and dynamic structure containing internal complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号