首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of cDNA clones coding for alkali myosin light chains (AMLC) was isolated from fetal human skeletal muscle. Nucleotide sequence analysis and RNA expression patterns of individual clones revealed related sequences corresponding to (i) fast fiber type MLC1 and MLC3; (ii) the embryonic MLC that is also expressed in fetal ventricle and adult atrium (MLCemb); and (iii) a nonsarcomeric MLC isoform that is found in all nonmuscle cell types and smooth muscle. The AMLC gene family in man comprises unique copies for MLC1, MLC3 and MLCemb, and multiple copies for the nonsarcomeric MLC genes. The gene coding for MLC1 and MLC3 is located on human chromosome 2.  相似文献   

2.
We have isolated two cDNA clones for myosin alkali light chain (MLC) mRNA from two respective cDNA libraries of chick gizzard and fibroblast cells by cross-hybridization to the previously isolated cDNA of skeletal muscle MLC. Sequence analysis of the two cloned cDNAs revealed that both of them are homologous to but distinct from the cDNA sequence used as the probe so that they may be classified into members of the MLC family, that they are identical with each other in the 3' and 5' untranslated sequence as well as in the coding sequence with a notable exception of a 39-nucleotide insertion in the fibroblast cDNA, 26 nucleotides of which are used for encoding the C-terminal amino acid sequence, and, therefore, that they encode the identical 142-amino acid sequence with different C-terminals of nine amino acids, each specific for fibroblast and gizzard smooth muscle MLC. The position of the inserted block corresponds exactly to one of the exon-intron junctions in the other MLC genes whose structures have so far been elucidated. DNA blot analysis suggested that the two MLC mRNAs of gizzard (smooth muscle) and fibroblast cells (nonmuscle) are generated from a single gene, probably through alternative RNA splicing mechanisms. RNA blot analysis and S1 nuclease mapping analysis using RNA preparations from fibroblast and gizzard tissues showed that the fibroblast MLC mRNA is expressed predominantly in fibroblast cells, but not, or very scantily if at all, in the gizzard, whereas the reverse is true for the gizzard smooth muscle MLC mRNA.  相似文献   

3.
We previously reported the characterization of a rabbit uterus cDNA clone (SMHC29) which encoded part of the light meromyosin of smooth muscle myosin heavy chain (Nagai, R., Larson, D.M., and Periasamy, M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 1047-1051). We have now characterized a second cDNA clone (SMHC40) which also encodes part of the light meromyosin but differs from SMHC29 in the following respects. Nucleotide sequence analysis demonstrates that the two myosin heavy chain mRNAs are identical over 1424 nucleotides but differ in part of the 3'-carboxyl coding region and a portion of the 3'-nontranslated sequence. Specifically, SMHC40 cDNA encodes a unique stretch of 43 amino acids at the carboxyl terminus, whereas SMHC29 cDNA contains a shorter carboxyl terminus of 9 unique amino acids which is the result of a 39-nucleotide insertion. Recent peptide mapping of smooth muscle myosin heavy chain identified two isotypes with differences in the light meromyosin fragment that were designated as SM1 (204 kDa) and SM2 (200 kDa) type myosin (Eddinger, T. J., and Murphy, R.A. (1988) Biochemistry 27, 3807-3811). In this study we present direct evidence that SMHC40 and SMHC29 mRNA encode the two smooth muscle myosin heavy chain isoforms, SM1 and SM2, respectively, by immunoblot analysis using antibodies against specific carboxyl terminus sequences deduced from SMHC40 and SMHC29 cDNA clones.  相似文献   

4.
Two distinct cDNA clones for nonmuscle myosin heavy chain (MHC) were isolated from a chicken fibroblast cDNA library by cross-hydridization under a moderate stringency with chicken gizzard smooth muscle MHC cDNA. These two fibroblast MHC and the gizzard MHC are each encoded in different genes in the chicken genome. Northern blot analysis showed that both of the nonmuscle MHC mRNAs were expressed not only in fibroblasts but also in a variety of tissues including brain, lung, kidney, spleen, and skeletal, cardiac and smooth muscles. However, the relative contents of the two nonmuscle MHC mRNAs varied greatly among tissues. The encoded amino acid sequences of the nonmuscle MHCs were highly similar to each other (81% identity) and to the smooth muscle MHC (81-84%), but much less similar to vertebrate skeletal muscle MHCs (38-41%) or to protista nonmuscle MHCs (35-36%). A phylogenic tree of MHC isoforms was constructed by calculating the similarity scores between these MHC sequences. An examination of the tree showed that the vertebrate sarcomeric (skeletal and cardiac) MHC isoforms are encoded in a very closely related multigene family, and that the vertebrate non-sarcomeric (smooth muscle and nonmuscle) MHC isoforms define a distinct, less conserved MHC gene family.  相似文献   

5.
We have isolated and characterized two distinct myosin heavy chain cDNA clones from a neonatal rat aorta cDNA library. These clones encode part of the light meromyosin region and the carboxyl terminus of smooth muscle myosin heavy chain. The two rat aorta cDNA clones were identical in their 5' coding sequence but diverged at the 3' coding and in a portion of the 3' untranslated regions. One cDNA clone, RAMHC21, encoded 43 unique amino acids from the point of divergence of the two cDNAs. The second cDNA clone, RAMHC 15, encoded a shorter carboxyl terminus of nine unique amino acids and was the result of a 39 nucleotide insertion. This extra nucleotide sequence was not present in RAMHC21. The rest of the 3' untranslated sequences were common to both cDNA clones. Genomic cloning and DNA sequence analysis demonstrated that an exon specifying the 39 nucleotides unique to RAMHC15 mRNA was present, together with the 5' upstream common exons in the same contiguous stretch of genomic DNA. The 39 nucleotide exon is flanked on either side by two relatively large introns of approximately 2600 and 2700 bases in size. RNase protection analysis indicated that the two corresponding mRNAs were coexpressed in both vascular and non-vascular smooth muscle tissues. This is the first demonstration of alternative RNA processing in a vertebrate myosin heavy chain gene and provides a novel mechanism for generating myosin heavy chain protein diversity in smooth muscle tissues.  相似文献   

6.
The 20-kDa regulatory myosin light chain (MLC), also known as MLC-2, plays an important role in the regulation of both smooth muscle and nonmuscle cell contractile activity. Phosphorylation of MLC-2 by the enzyme MLC kinase increases the actin-activated myosin ATPase activity and thereby regulates the contractile activity. We have isolated and characterized an MLC-2 cDNA corresponding to the human vascular smooth muscle MLC-2 isoform from a cDNA library derived from umbilical artery RNA. The translation of the in vitro synthesized mRNA, corresponding to the cDNA insert, in a rabbit reticulocyte lysate results in the synthesis of a 20,000-dalton protein that is immunoreactive with antibodies raised against purified chicken gizzard MLC-2. The derived amino acid sequence of the putative human smooth muscle MLC-2 shows only three amino acid differences when compared to chicken gizzard MLC-2. However, comparison with the human cardiac isoform reveals only 48% homology. Blot hybridizations and S1 nuclease analysis indicate that the human smooth muscle MLC-2 isoform is expressed restrictively in smooth muscle tissues such as colon and uterus and in some, but not all, nonmuscle cell lines. Previously reported MLC-2 cDNA from rat aortic smooth muscle cells in culture is ubiquitously expressed in all muscle and nonmuscle cells, and it was suggested that both smooth muscle and nonmuscle MLC-2 proteins are identical and are probably encoded by the same gene. In contrast, the human smooth muscle MLC-2 cDNA that we have characterized from an intact smooth muscle tissue is not expressed in skeletal and cardiac muscles and also in a number of nonmuscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have isolated cDNA clones of the mRNA for chick embryonic myosin light chain (MLC), L23, by cross-hybridization with chicken skeletal muscle MLC1 cDNA. The identification of the isolated cDNAs was carried out by in vitro translation of hybrid-selected mRNA. Sequence analysis of the cloned cDNAs revealed that the cDNA insert contained 832 nucleotides and predicted a polypeptide of 185 amino acids with a calculated molecular weight of 20,687. The deduced amino acid sequence for L23 showed high sequence similarities to those of adult alkali type MLCs from various tissues, indicating that L23 belongs to the alkali MLC group. Using the cloned cDNA as a hybridization probe, we have revealed by RNA blot analysis that the expression of L23 mRNA was regulated in temporal and tissue-specific manners. The L23 mRNA of 1.1 kilobases is transiently expressed in embryonic skeletal, cardiac, and smooth muscles of chickens. It is also found in the brain of chickens during all stages of development so far investigated. Only a single gene for L23 was detected by Southern blot of chick genomic DNA. We therefore suggest that L23 is expressed from a single gene in both embryonic muscles and brain.  相似文献   

8.
The myosin 20,000-D regulatory light chain (RLC) has a central role in smooth muscle contraction. Previous work has suggested either the presence of two RLC isoforms, one specific for nonmuscle and one specific for smooth muscle, or the absence of a true smooth muscle-specific isoform, in which instance smooth muscle cells would use nonmuscle isoforms. To address this issue directly, we have isolated rat RLC cDNAs and corresponding genomic sequences of two smooth muscle RLC based on homology to the amino acid sequence of the chicken gizzard RLC. These cDNAs are highly homologous in their amino acid coding regions and contain unique 3'-untranslated regions. RNA analyses of rat tissue using these unique 3'-untranslated regions revealed that their expression is differentially regulated. However, one cDNA (RLC-B), predominantly a nonmuscle isoform, based on abundant expression in nonmuscle tissues including brain, spleen, and lung, is easily detected in smooth muscle tissues. The other cDNA (RLC-A; see Taubman, M., J. W. Grant, and B. Nadal-Ginard. 1987. J. Cell Biol. 104:1505-1513) was detected in a variety of nonmuscle, smooth muscle, and sarcomeric tissues. RNA analyses comparing expression of both RLC genes with the actin gene family and smooth muscle specific alpha-tropomyosin demonstrated that neither RLC gene was strictly smooth muscle specific. RNA analyses of cell lines demonstrated that both of the RLC genes are expressed in a variety of cell types. The complete genomic structure of RLC-A and close linkage to RLC-B is described.  相似文献   

9.
Smooth muscle cells express isoforms of actin and myosin heavy chains (MHC). In early postnatal animals the nonmuscle (NM) actin and MHC isoforms in vascular (aorta) smooth muscle were present in relatively high percentages. More than 30% of the MHC and 40% of the actin isoforms were NM. The relative percentage of the NM isoforms decreased significantly as the animals reached maturity, with NM MHC less than 10% and NM actin less than 30% of the totals. Concurrent with this decrease in NM isoforms was an increase in the smooth muscle (SM) isoforms. The relative changes and time frame in which these changes occurred were very similar for the actin and MHC isoforms. In arterial tissue there were species differences for changes with development in the two SM MHC isoforms (SM1 and SM2). The ratio of SM1:SM2 in young rat aorta was approximately 0.5, while this same ratio was approximately 3 in young swine carotid. Both adult rats and swine had a SM1:SM2 MHC ratio of approximately 1.2. Rat bladder smooth muscle showed no significant change in NM vs SM ratio between young and old rats, while the SM1:SM2 ratio decreased from 2.7 to 1.7 between these age groups. The shifts in alpha and beta actin were similar to those in the vascular tissue, but of much smaller magnitude.  相似文献   

10.
11.
Phosphorylation of the regulatory light chains (RMLC) of nonmuscle myosin can increase the actin-activated ATPase activity and filament formation. Little is known about these regulatory mechanisms and how the RMLC are involved in ATP hydrolysis. To better characterize the nonmuscle RMLC, we isolated cDNAs encoding the Dictyostelium RMLC. Using an antibody specific for the RMLC, we screened a lambda gt11 expression library and obtained a 200-base-pair clone that encoded a portion of the RMLC. The remainder of the sequence was obtained from two clones identified by DNA hybridization, using the 200-base-pair cDNA. The composite RMLC cDNA was 645 nucleotides long. It contained 60 base pairs of 5' untranslated, 483 bases of coding, and 102 base pairs of 3' untranslated sequence. The amino acid sequence predicted an 18,300-dalton protein that shares 42% amino acid identity with Dictyostelium calmodulin and 30% identity with the chicken skeletal myosin RMLC. This sequence contained three regions that were similar to the E-F hand calcium-binding domains found in calmodulin, troponin C, and other myosin light chains. A sequence similar to the phosphorylation sequence found in chicken gizzard and skeletal myosin light chains was found at the amino terminus. Genomic Southern blot analysis suggested that the Dictyostelium genome contains a single gene encoding the RMLC. Analysis of RMLC expression patterns during Dictyostelium development indicated that accumulation of this mRNA increases just before aggregation and again during culmination. This pattern is similar to that obtained for the Dictyostelium essential myosin light chain and suggests that expression of the two light chains is coordinated during development.  相似文献   

12.
13.
14.
We used an antibody specific for Dictyostelium discoideum myosin to screen a lambda gt11 cDNA expression library to obtain cDNA clones which encode the Dictyostelium essential myosin light chain (EMLC). The amino acid sequence predicted from the sequence of the cDNA clone showed 31.5% identity with the amino acid sequence of the chicken EMLC. Comparisons of the Dictyostelium EMLC, a nonmuscle cell type, with EMLC sequences from similar MLCs of skeletal- and smooth-muscle origin, showed distinct regions of homology. Much of the observed homology was localized to regions corresponding to consensus Ca2+-binding of E-F hand domains. Southern blot analysis suggested that the Dictyostelium genome contains a single gene encoding the EMLC. Examination of the pattern of EMLC mRNA expression showed that a significant increase in EMLC message levels occurred during the first few hours of development, coinciding with increased actin expression and immediately preceding the period of maximal chemotactic activity.  相似文献   

15.
16.
Myosin II is a hexameric protein complex consisting of two myosin heavy chains, two myosin essential light chains and two myosin regulatory light chains. Multiple subunit isoforms exist, allowing great diversity in myosin II composition which likely impacts on its contractile properties. Little is known about the evolutionary origin, expression pattern and function of myosin regulatory light chain (MLC2) isoforms. We analysed the evolutionary relationship between smooth muscle (sm), nonmuscle (nm) and nonmuscle-like (nml) MLC2 genes, which encode three homologous proteins expressed in nonmuscle cells. The three genes arose by successive gene duplication events. The high sequence similarity between the tandemly arranged nm- and nml-MLC2 genes is best explained by gene conversion. Urea/glycerol-polyacrylamide gel electrophoresis and RNA analysis were employed to monitor expression of sm-, nm- and nml-MLC2 in human and mouse cell lines. Conspicuous differences between transformed and non-transformed cells were observed, with sm-MLC2 being suppressed in Ras-transformed cells. Our findings shed light on the evolutionary history of three homologous MLC2 proteins and point to isoform-specific cell growth-related roles in nonmuscle cell myosin II contractility.  相似文献   

17.
A library of cDNA clones was constructed from adult rat skeletal muscle mRNA, from which a set of contractile protein clones was selected. These clones were identified by sequencing the cDNA inserts and comparing the derived amino acid sequences with published sequences of rabbit contractile proteins. In this manner, clones corresponding to myosin light chains 1, 2, and 3, troponin-C, troponin-T, alpha-tropomyosin, and alpha-actin were identified. A high degree of amino acid sequence conservation was found upon comparison of the rat and rabbit proteins. Using the cDNA clone panel, we analyzed the expression of abundant rat muscle mRNAs. We show that abundant rat muscle mRNAs can be classified into four developmentally regulated groups, based upon their expression at different stages of myogenesis. One class of mRNAs is expressed during all stages of muscle development. Since these mRNAs are also present in nonmuscle tissues, we conclude that they code for housekeeping proteins. The second class of mRNAs is present in both embryonic and adult muscle, while a third class of mRNAs is expressed only in adult muscle. A small number of mRNAs, which are present at greater levels in undifferentiated myoblasts than in adult muscle, comprise a fourth class. These results suggest the existence of at least four modes of gene control during myogenesis.  相似文献   

18.
19.
Both smooth muscle (SM) and nonmuscle class II myosin molecules are expressed in SM tissues comprising hollow organ systems. Individual SM cells may express one or more of multiple myosin II isoforms that differ in myosin heavy chain (MHC) and myosin light chain (MLC) subunits. Although much has been learned, the expression profiles, organization within contractile filaments, localization within cells, and precise roles in various contractile functions of these different myosin molecules are still not well understood. However, data supporting unique physiological roles for certain isoforms continues to build. Isoform differences located in the S1 head region of the MHC can alter actin binding and rates of ATP hydrolysis. Differences located in the MHC tail can alter the formation, stability, and size of the myosin thick filament. In these distinct ways, both head and tail isoform differences can alter force generation and muscle shortening velocities. The MLCs that are associated with the lever arm of the S1 head can affect the flexibility and range of motion of this domain and possibly the motion of the S2 and motor domains. Phosphorylation of MLC(20) has been associated with conformational changes in the S1 and/or S2 fragments regulating enzymatic activity of the entire myosin molecule. A challenge for the future will be delineation of the physiological significance of the heterogeneous expression of these isoforms in developmental, tissue-specific, and species-specific patterns and or the intra- and intercellular heterogeneity of myosin isoform expression in SM cells of a given organ.  相似文献   

20.
Two-dimensional mapping of the tryptic phosphopeptides generated following in vitro protein kinase C phosphorylation of the myosin heavy chain isolated from human platelets and chicken intestinal epithelial cells shows a single radioactive peptide. These peptides were found to comigrate, suggesting that they were identical, and amino acid sequence analysis of the human platelet tryptic peptide yielded the sequence -Glu-Val-Ser-Ser(PO4)-Leu-Lys-. Inspection of the amino acid sequence for the chicken intestinal epithelial cell myosin heavy chain (196 kDa) derived from cDNA cloning showed that this peptide was identical with a tryptic peptide present near the carboxyl terminal of the predicted alpha-helix of the myosin rod. Although other vertebrate nonmuscle myosin heavy chains retain neighboring amino acid sequences as well as the serine residue phosphorylated by protein kinase C, this residue is notably absent in all vertebrate smooth muscle myosin heavy chains (both 204 and 200 kDa) sequenced to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号