首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro activities of tachyplesin III against Pseudomonas aeruginosa   总被引:1,自引:0,他引:1  
The in vitro activities of tachyplesin III were investigated against 20 multidrug-resistant Pseudomonas aeruginosa clinical isolates. Methods included minimal inhibitory concentrations, minimal bactericidal concentrations, time-kill studies, checkerboard titration method, endotoxin-binding activity and cytotoxicity assay. Overall the organisms were susceptible to the peptide at concentrations of 0.50-4 mg/l. Tachyplesin III completely inhibits the endotoxin procoagulant activity at 22.36 mg/l concentration. Fractional inhibitory concentration indexes demonstrated synergy between the peptide and betalactams or colistin. In conclusion, the intrinsic antibacterial and antiendotoxin activities and the synergistic interactions demonstrated with clinically used antibiotics make tachyplesin III valuable as potential candidate for new therapeutic strategies aimed to treat P. aeruginosa infection.  相似文献   

2.
We investigated the efficacy of tazobactam/piperacillin (TZP), tachyplesin III and granulocyte-colony stimulating factor (G-CSF) in an experimental murine neutropenic intraabdominal infection. BALB/c male mice were rendered neutropenic by intraperitoneal administration of cyclophosphamide on days -4 and -2 pre-infection. Septic shock was induced by cecal ligation and puncture. Animals received intravenously isotonic sodium chloride solution (control group C1), 1mg/kg of tachyplesin III, 120 mg/kg of TZP, 0.1mg/kg of G-CSF, tachyplesin III plus TZP, G-CSF plus TZP and finally tachyplesin III plus G-CSF plus TZP, respectively. Lethality, bacterial growth in blood, peritoneum, spleen, liver, and mesenteric lymph nodes, endotoxin, IL-6 and TNF-alpha concentrations in plasma were evaluated. All compounds reduced the lethality when compared to controls. Endotoxin and cytokine plasma levels were significantly higher in TZP-treated animals compared to tachyplesin III-treated animals. Finally, all drug combinations showed to be the most effective treatment in reducing all variables measured. Interestingly, the strongest results concerning the bacterial growth inhibition, lethality and endotoxemia were obtained when the three compounds were contemporaneously administered. The presence of their positive interaction makes tachyplesin III and G-CSF potentially valuable as an adjuvant for antimicrobial chemotherapy of sepsis.  相似文献   

3.
An experimental study was performed to evaluate the efficacy of BMAP-28 alone and in combination with vancomycin in animal models ureteral stent infection due to Enterococcus faecalis and Staphylococcus aureus. Study included a control group without bacterial challenge to evaluate the sterility of surgical procedure, a challenged control group that did not receive any antibiotic prophylaxis and for each bacterial strain three challenged groups that received (a) 10 mg/kg vancomycin intraperitoneally, immediately after stent implantation, (b) BMAP-28-coated ureteral stents where 0.2-cm(2) sterile ureteral stents were incubated in 1mg/l BMAP-28 solution for 30 min immediately before implantation and (c) intraperitoneal vancomycin plus BMAP-28-coated ureteral stent at the above concentrations. Experiments were performed in duplicate. Ureteral stents were explanted at day 5 following implantation and biofilm bacteria enumerated. Our data showed that rats that received intraperitoneal vancomycin showed the lowest bacterial numbers. BMAP-28 combined with vancomycin showed efficacies higher than that of each single compound. These results highlight the potential usefulness of this combination in preventing ureteral stent-associated in gram-positive infections.  相似文献   

4.
TZP4 is a triazine-based amphipathic polymer designed to mimic the amphipathic structure found in antimicrobial peptides. TZP4 showed potent antimicrobial activity comparable to melittin against antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. TZP4 showed high resistance to proteolytic degradation and low tendency to develop drug resistance. The results from membrane depolarization, SYTOX Green uptake, flow cytometry, and gel retardation revealed that the mechanism of antimicrobial action of TZP4 involved an intracellular target rather than the bacterial cell membrane. Furthermore, TZP4 suppressed the messenger RNA levels of inducible nitric oxide synthase and tumor necrosis factor-α (TNF-α) and inhibited the release of nitric oxide and TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. BODIPY-TR-cadaverine displacement and dissociation of fluorescein isothiocyanate (FITC)-labeled LPS assays revealed that TZP4 strongly bound to LPS and disaggregated the LPS oligomers. Flow cytometric analysis demonstrated that TZP4 inhibits the binding of FITC-conjugated LPS to RAW264.7 cells. These observations indicate that TZP4 may exert its antiendotoxic activity by directly binding with LPS and inhibiting the interaction between LPS and CD14+ cells. Collectively, TZP4 is a promising drug candidate for the treatment of endotoxic shock and sepsis caused by Gram-negative bacterial infections.  相似文献   

5.
A cationic peptide, designated tachyplesin, was isolated from acid extracts of horseshoe crab (Tachypleus tridentatus) hemocyte debris. It consists of 17 residues and the structure determined by Edman degradation is: (formula; see text) The carboxyl-terminal end of this peptide was identified as arginine alpha-amide, and the whole sequence including the alpha-amide was also confirmed by fast atom bombardment mass spectrometry, indicating a mass value of 2263. Tachyplesin inhibits growth of both Gram-negative and -positive bacteria at low concentrations and formed a complex with bacterial lipopolysaccharide. Tachyplesin seems likely to act as antimicrobial peptide for self-defense in the horseshoe crab against invading microorganisms.  相似文献   

6.
7.
An experimental study was designed to investigate the efficacy of BMAP-27, a compound of the cathelicidin family, in neutralizing Escherichia coli 0111:B4 lipopolysaccharide (LPS) in bile duct-ligated mice. Main outcome measures were: endotoxin and TNF-alpha concentrations in plasma, evidence of bacterial translocation in blood and peritoneum, and lethality. Adult male BALB/c mice were injected intraperitoneally with 2 mg/kg E. coli 0111:B4 LPS 1 week after sham operation or bile duct ligation (BDL). Six groups were studied: sham with placebo, sham with 120 mg/kg tazobactam-piperacillin (TZP), sham with 1 mg/kg BMAP-27, BDL with placebo, BDL with 120 mg/kg TZP, and BDL with 1mg/kg BMAP-27. After LPS, TNF-alpha plasma levels were significantly higher in BDL mice compared to sham-operated animals. BMAP-27 achieved a significant reduction of plasma endotoxin and TNF-alpha concentration when compared with placebo- and TZP-treated groups. On the other hand, both TZP and BMAP-27 significantly reduced the bacterial growth compared with saline treatment. Finally, LPS induced 60% and 55% lethality in BDL placebo- and TZP-treated treated mice and no lethality in sham-operated mice, while only BMAP-27 significantly reduced the lethality to 10%. In light of its dual antimicrobial and anti-endotoxin properties, BMAP-27 could be an interesting compound to inhibit bacterial translocation and endotoxin release in obstructive jaundice.  相似文献   

8.
Tachyplesin and polyphemusin are antimicrobial peptides recently isolated from the hemocytes of horseshoe crabs (Tachypleus tridentatus and Limulus polyphemus). We synthesized them and their analogs and examined their antiviral activity against human immunodeficiency virus (HIV) type 1 in vitro. The infection of human T cells with the virus was markedly inhibited by some of them at low concentrations. In this structure-activity study, we found that [Tyr5,12, Lys7]-polyphemusin II, which was designated as T22, had extremely high anti-HIV activity. Its 50% inhibitory concentration (EC50) was 0.008 micrograms/ml, while its 50% cytotoxic concentration (CC50) was 54 micrograms/ml and these values were comparable to those of AZT. This result indicates that T22 would be a potential candidate for the therapy of HIV infection.  相似文献   

9.
Long-chain proline-rich antimicrobial peptides such as bumblebee abaecin show minimal activity against Gram-negative bacteria despite binding efficiently to specific intracellular targets. We recently reported that bumblebee abaecin interacts with Escherichia coli DnaK but shows negligible antibacterial activity unless it is combined with sublethal doses of the pore-forming peptide hymenoptaecin. These two bumblebee peptides are co-expressed in vivo in response to a bacterial challenge. Here we investigated whether abaecin interacts similarly with pore-forming peptides from other organisms by replacing hymenoptaecin with sublethal concentrations of cecropin A (0.3 μM) or stomoxyn (0.05 μM). We found that abaecin increased the membrane permeabilization effects of both peptides, confirming that it can reduce the minimal inhibitory concentrations of pore-forming peptides from other species. We also used atomic force microscopy to show that 20 μM abaecin combined with sublethal concentrations of cecropin A or stomoxyn causes profound structural changes to the bacterial cell surface. Our data indicate that the potentiating functional interaction between abaecin and pore-forming peptides is not restricted to specific co-expressed peptides from the same species but is likely to be a general mechanism. Combination therapies based on diverse insect-derived peptides could therefore be used to tackle bacteria that are recalcitrant to current antibiotics.  相似文献   

10.
Recent studies have suggested that intracellular Wolbachia bacteria are necessary for reproduction and survival of adult filarial worms. We now report results of in vitro studies of effects of antibacterial antibiotics (tetracycline, rifampicin, chloramphenicol, azithromycin, and doxycycline) on Brugia malayi infective larvae (L3) motility and molting. All of the antibiotics tested except chloramphenicol decreased L3 motility by 50% or more at 10 days, with minimal effective concentrations (MECs) of 20-100 microg/ml. Tetracyclines, rifampicin, and chloramphenicol inhibited L3 to L4 molting by 12 days in a concentration- and time-dependent manner, with MECs in the range of 1-20 microg/ml. These studies show that antibiotics active against Rickettsiaceae inhibit B. malayi L3 molting at low concentrations in vitro; higher concentrations kill the larvae. While it is possible that antibiotics directly affect filarial L3, we believe it is more likely that the effects seen are indirect effects related to bacterial killing.  相似文献   

11.
Recent studies of bacterial Fe(II) oxidation at circumneutral pH by a newly-isolated lithotrophic β-Proteobacterium (strain TW2) are reviewed in relation to a conceptual model that accounts for the influence of biogenic Fe(III)-binding ligands on patterns of Fe(II) oxidation and Fe(III) oxide deposition in opposing gradients of Fe(II) and O2. The conceptual model envisions complexation of Fe(III) by biogenic ligands as mechanism which alters the locus of Fe(III) oxide deposition relative to Fe(II) oxidation so as to delay/retard cell encrustation with Fe(III) oxides. Experiments examining the potential for bacterial Fe redox cycling in microcosms containing ferrihydrite-coated sand and a coculture of a lithotrophic Fe(II)-oxidizing bacterium (strain TW2) and a dissimilatory Fe(III)-reducing bacterium (Shewanella algae strain BrY) are described and interpreted in relation to an extended version of the conceptual model in which Fe(III)-binding ligands promote rapid microscale Fe redox cycling. The coculture systems showed minimal Fe(III) oxide accumulation at the sand-water interface, despite intensive O2 input from the atmosphere and measurable dissolved O2 to a depth of 2 mm below the sand-water interface. In contrast, a distinct layer of oxide precipitates formed in systems containing Fe(III)-reducing bacteria alone. Voltammetric microelectrode measurements revealed much lower concentrations of dissolved Fe(II) in the coculture systems. Examination of materials from the cocultures by fluorescence in situ hybridization indicated close physical juxtapositioning of Fe(II)-oxidizing and Fe(III)reducing bacteria in the upper few mm of sand. Together these results indicate that Fe(II)-oxidizing bacteria have the potential to enhance the coupling of Fe(II) oxidation and Fe(III) reduction at redox interfaces, thereby promoting rapid microscale cycling of Fe.  相似文献   

12.
A family of autocrine growth factors in Mycobacterium tuberculosis   总被引:34,自引:0,他引:34  
Mycobacterium tuberculosis and its close relative, Mycobacterium bovis (BCG) contain five genes whose predicted products resemble Rpf from Micrococcus luteus. Rpf is a secreted growth factor, active at picomolar concentrations, which is required for the growth of vegetative cells in minimal media at very low inoculum densities, as well as the resuscitation of dormant cells. We show here that the five cognate proteins from M. tuberculosis have very similar characteristics and properties to those of Rpf. They too stimulate bacterial growth at picomolar (and in some cases, subpicomolar) concentrations. Several lines of evidence indicate that they exert their activity from an extra-cytoplasmic location, suggesting that they are also involved in intercellular signalling. The five M. tuberculosis proteins show cross-species activity against M. luteus, Mycobacterium smegmatis and M. bovis (BCG). Actively growing cells of M. bovis (BCG) do not respond to these proteins, whereas bacteria exposed to a prolonged stationary phase do. Affinity-purified antibodies inhibit bacterial growth in vitro, suggesting that sequestration of these proteins at the cell surface might provide a means to limit or even prevent bacterial multiplication in vivo. The Rpf family of bacterial growth factors may therefore provide novel opportunities for preventing and controlling mycobacterial infections.  相似文献   

13.
The neural cell adhesion molecule (N-CAM) engages in diverse functional roles in neural cell interactions. Its extracellular part consists of five Ig-like domains and two fibronectin type III homologous (type III) repeats. To investigate the functional properties of the different structural domains of the molecule in cell interactions and signal transduction to the cell interior, we have synthesized, in a bacterial expression system, the individual domains and tandem sets of individual domains as protein fragments. These protein fragments were tested for their capacity to influence adhesion and spreading of neuronal cell bodies, promote neurite outgrowth, and influence cellular migration patterns from cerebellar microexplants in vitro. Ig-like domains I and II and the combined type III repeats I-II were most efficient for adhesion of neuronal cell bodies, when coated as substrates. Neurite outgrowth was best on the substrate-coated combined type III repeats I- II, followed by the combined Ig-like domains I-V and Ig-like domain I. Spreading of neuronal cell bodies was best on substrate-coated combined type III repeats I-II, followed by Ig-like domain I and the combined Ig- like domains I-V. The cellular migration pattern from cerebellar microexplant cultures plated on a mixture of laminin and poly-L-lysine was modified by Ig-like domains I, III, and IV, while Ig-like domains II and V and the combined type III repeats I-II did not show significant modifications, when added as soluble fragments. Outgrowth of astrocytic processes from the explant core was influenced only by Ig- like domain I. Metabolism of inositol phosphates was strongly increased by Ig-like domain I and less by the Ig-like domains II, III, IV, and V, and not influenced by the combined type III repeats I-II. Intracellular concentrations of Ca2+ and pH values were increased only by the Ig-like domains I and II. Intracellular levels of cAMP and GMP were not influenced by any protein fragment. These experiments indicate that different domains of N-CAM subserve different functional roles in cell recognition and signal transduction, and are functionally competent without nervous system-derived carbohydrate structures.  相似文献   

14.
We synthesized a water soluble Fe(III)-salen complex and investigated its biochemical effects on DNA in vitro and on cultured human cells. We showed that Fe(III)-salen produces free radicals in the presence of reducing agent dithiothreitol (DTT) and induces DNA damage in vitro. Interestingly, upon treatment with Fe(III)-salen at concentration as low as 10microM, HEK293 human cells showed morphological changes, nuclear fragmentation, and nuclear condensation that are typical features of apoptotic cell death. The cytotoxicity measurement showed that IC(50) of Fe(III)-salen is 2.0microM for HEK293 cells. Furthermore, treatment with Fe(III)-salen resulted in translocation of cytochrome c from mitochondria to cytosol affecting mitochondrial membrane permeability. Our results demonstrated that Fe(III)-salen not only damages DNA in vitro, but also induces apoptosis in human cells via mitochondrial pathway.  相似文献   

15.
16.
The role of bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity in the interaction between tomato (Lycopersicon esculentum=Solanum lycopersicum) and Pseudomonas brassicacearum was studied in different strains. The phytopathogenic strain 520-1 possesses ACC deaminase activity, an important trait of plant growth-promoting rhizobacteria (PGPR) that stimulates root growth. The ACC-utilizing PGPR strain Am3 increased in vitro root elongation and root biomass of soil-grown tomato cv. Ailsa Craig at low bacterial concentrations (10(6) cells ml-1 in vitro and 10(6) cells g-1 soil) but had negative effects on in vitro root elongation at higher bacterial concentrations. A mutant strain of Am3 (designated T8-1) that was engineered to be ACC deaminase deficient failed to promote tomato root growth in vitro and in soil. Although strains T8-1 and 520-1 inhibited root growth in vitro at higher bacterial concentrations (>10(6) cells ml-1), they did not cause disease symptoms in vitro after seed inoculation, or in soil supplemented with bacteria. All the P. brassicacearum strains studied caused pith necrosis when stems or fruits were inoculated with a bacterial suspension, as did the causal organism of this disease (P. corrugata 176), but the non-pathogenic strain Pseudomonas sp. Dp2 did not. Strains Am3 and T8-1 were marked with antibiotic resistance and fluorescence to show that bacteria introduced to the nutrient solution or on seeds in vitro, or in soil were capable of colonizing the root surface, but were not detected inside root tissues. Both strains showed similar colonization ability either on root surfaces or in wounded stems. The results suggest that bacterial ACC deaminase of P. brassicacearum Am3 can promote growth in tomato by masking the phytopathogenic properties of this bacterium.  相似文献   

17.
Nectar-feeding birds have remarkably low nitrogen requirements. These may be due either to adaptation to a low-protein diet or simply to feeding on a fluid diet that minimizes metabolic fecal nitrogen losses. We measured minimal nitrogen requirements (MNR) and total endogenous nitrogen loss (TENL) in the omnivorous European starling Sturnus vulgaris, fed on an artificial nectar-like fluid diet of varying concentrations of sugar and protein. The MNR and TENL of the birds were similar and even slightly higher than allometrically expected values for birds of the starlings' mass (140% and 103%, respectively). This suggests that the low measured nitrogen requirements of nectar-feeding birds are not simply the result of their sugary and watery diets but a physiological adaptation to the low nitrogen input. We also measured the effect of water and protein intake on the nitrogenous waste form in the excreta and ureteral urine in European starlings. Neither high water intake nor low protein intake increased the fraction of nitrogen excreted as ammonia. Ammonia was excreted at consistently low levels by the starlings, and its concentration was significantly higher in ureteral urine than in excreta. We hypothesize that ureteral ammonia was reabsorbed in the lower intestine, indicating a postrenal modification of the urine.  相似文献   

18.
The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.  相似文献   

19.
Enteropathogenic Escherichia coli (EPEC) is an enteric human pathogen responsible for much worldwide morbidity and mortality. EPEC uses a type III secretion system to inject bacterial proteins into the cytosol of intestinal epithelial cells to cause diarrheal disease. We are interested in determining the host proteins to which EPEC translocator and effector proteins bind during infection. To facilitate protein enrichment, we created fusions between GST and EPEC virulence proteins, and expressed these fusions individually in Saccharomyces cerevisiae. The biology of S. cerevisiae is well understood and often employed as a model eukaryote to study the function of bacterial virulence factors. We isolated the yeast proteins that interact with individual EPEC proteins by affinity purifying against the GST tag. These complexes were subjected to ICAT combined with ESI-MS/MS. Database searching of sequenced peptides provided a list of proteins that bound specifically to each EPEC virulence protein. The dataset suggests several potential mammalian targets of these proteins that may guide future experimentation.  相似文献   

20.
Tachyplesin I is a cyclic beta-sheet antimicrobial peptide isolated from the hemocytes of Tachypleus tridentatus. The four cysteine residues in tachyplesin I play a structural role in imparting amphipathicity to the peptide which has been shown to be essential for its activity. We investigated the role of amphipathicity using an analogue of tachyplesin I (TP-I), CDT (KWFRVYRGIYRRR-NH(2)), in which all four cysteines were deleted. Like TP-I, CDT shows antimicrobial activity and disrupts Escherichia coli outer membrane and model membranes mimicking bacterial inner membranes at micromolar concentrations. The CDT peptide does not cause hemolysis up to 200 microg/mL while TP-I showed about 10% hemolysis at 100 microg/mL and about 25% hemolysis at 150 microg/mL. Peptide-into-lipid titrations under isothermal conditions reveal that the interaction of CDT with lipid membranes is an enthalpy-driven process. Binding assays performed using fluorometry demonstrate that the peptide CDT binds and inserts into only negatively charged membranes. The peptide-induced thermotropic phase transition of MLVs formed of DMPC and the DMPC/DMPG (7:3) mixture suggests specific lipid-peptide interactions. The circular dichroism study shows that the peptide exists as an unordered structure in an aqueous buffer and adopts a more ordered beta-structure upon binding to negatively charged membrane. The NMR data suggest that CDT binding to negatively charged bilayers induces a change in the lipid headgroup conformation with the lipid headgroup moving out of the bilayer surface toward the water phase, and therefore, a barrel stave mechanism of membrane disruption is unlikely as the peptide is located near the headgroup region of lipids. The lamellar phase (31)P chemical shift spectra observed at various concentrations of the peptide in bilayers suggest that the peptide may function neither via fragmentation of bilayers nor by promoting nonlamellar structures. NMR and fluorescence data suggest that the presence of cholesterol inhibits the peptide binding to the bilayers. These properties help to explain that cysteine residues may not contribute to antimicrobial activity and that the loss of hemolytic activity is due to lack of hydrophobicity and amphipathicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号