首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MLL gene from human chromosome 11q23 is involved in >30 different chromosomal translocations resulting in a plethora of different MLL fusion proteins. Each of these tends to associate with a specific leukaemia type, for example, MLL-AF9 is found mainly in acute myeloid leukaemia. We have studied the role of the Mll-AF9 gene fusion made in mouse embryonic stem cells by an homologous recombination knock-in. Acute leukaemias developed in heterozygous mice carrying this fusion as well as in chimeric mice. As with human chromosomal translocation t(9;11), the majority of cases were acute myeloid leukaemias (AMLs) involving immature myeloblasts, but a minority were acute lymphoblastic leukaemia. The AMLs were preceded by effects on haematopoietic differentiation involving a myeloproliferation resulting in accumulation of Mac-1/Gr-1 double-positive mature myeloid cells in bone marrow as early as 6 days after birth. Therefore, non-malignant expansion of myeloid precursors is the first stage of Mll-AF9-mediated leukaemia followed by accumulation of malignant cells in bone marrow and other tissues. Thus, the late onset of overt tumours suggests that secondary tumorigenic mutations are necessary for malignancy associated with MLL-AF9 gene fusion and that myeloproliferation provides the pool of cells in which such events can occur.  相似文献   

2.
Previous studies have suggested that the vav protooncogene plays an important role in hematopoiesis. To study this further, we have ablated the vav protooncogene by homologous recombination in embryonic stem (ES) cells. Homozygous vav (-/-) ES clones differentiate normally in culture and generate cells of erythroid, myeloid and mast cell lineages. Mice heterozygous for the targeted vav allele do not display any obvious abnormalities. However, homozygous embryos die very early during development. Crosses of vav (+/-) heterozygous mice yield apparently normal vav (-/-) E3.5 embryos but not post-implantation embryos (> or = E7.5). Furthermore, homozygous vav (-/-) blastocysts do not hatch in vitro. These results indicate that vav is essential for an early developmental step(s) that precedes the onset of hematopoiesis. Consistent with the phenotypic analysis of vav (-/-) embryos, we have identified Vav immunoreactivity in the extra-embryonic trophoblastic cell layer but not in the inner embryonic cell mass of E3.5 preimplantation embryos or in the egg cylinder of E6.5 and E7.5 post-implantation embryos. These results suggest that the vav gene is essential for normal trophoblast development and for implantation of the developing embryo.  相似文献   

3.
4.
The mixed lineage leukemia (MLL) gene encodes a very large nuclear protein homologous to Drosophila trithorax (trx). MLL is required for the proper maintenance of HOX gene expression during development and hematopoiesis. The exact regulatory mechanism of HOX gene expression by MLL is poorly understood, but it is believed that MLL functions at the level of chromatin organization. MLL was identified as a common target of chromosomal translocations associated with human acute leukemias. About 50 different MLL fusion partners have been isolated to date, and while similarities exist between groups of partners, there exists no unifying property shared by all the partners. MLL gene rearrangements are found in leukemias with both lymphoid and myeloid phenotypes and are often associated with infant and secondary leukemias. The immature phenotype of the leukemic blasts suggests an important role for MLL in the early stages of hematopoietic development. Mll homozygous mutant mice are embryonic lethal and exhibit deficiencies in yolk sac hematopoiesis. Recently, two different MLL-containing protein complexes have been isolated. These and other gain- and loss-of-function experiments have provided insight into normal MLL function and altered functions of MLL fusion proteins. This article reviews the progress made toward understanding the function of the wild-type MLL protein. While many advances in understanding this multifaceted protein have been made since its discovery, many challenging questions remain to be answered.  相似文献   

5.
Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory beta subunit, CK2beta, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2beta gene in mice leads to postimplantation lethality. Mutant embryos were reduced in size at embryonic day 6.5 (E6.5). They did not exhibit signs of apoptosis but did show reduced cell proliferation. Mutant embryos were resorbed at E7.5. In vitro, CK2beta(-/-) morula development stopped after the blastocyst stage. Attempts to generate homozygous embryonic stem (ES) cells failed. By using a conditional knockout approach, we show that lack of CK2beta is deleterious for mouse ES cells and primary embryonic fibroblasts. This is in contrast to what occurs with yeast cells, which can survive without functional CK2beta. Thus, our study demonstrates that in mammals, CK2beta is essential for viability at the cellular level, possibly because it acquired new functions during evolution.  相似文献   

6.
Agarwal SK  Jothi R 《PloS one》2012,7(5):e37952
Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies.  相似文献   

7.
8.
Many different chromosomal translocations occur in man at chromosome 11q23 in acute leukaemias. Molecular analyses revealed that the MLL gene (also called ALL-1, HRX or HTRX) is broken by the translocations, causing fusion with genes from other chromosomes. The diversity of MLL fusion partners poses a dilemma about the function of the fusion proteins in tumour development. The consequence of MLL truncation and fusion has been analysed by joining exon 8 of Mll with the bacterial lacZ gene using homologous recombination in mouse embryonic stem cells. We show that this fusion is sufficient to cause embryonic stem cell-derived acute leukaemias in chimeric mice, and these tumours occur with long latency compared with those found in MLL-Af9 chimeric mice. These findings indicate that an MLL fusion protein can contribute to tumorigenesis, even if the fusion partner has no known pathogenic role. Thus, truncation and fusion of MLL can be sufficient for tumorigenesis, regardless of the fusion partner.  相似文献   

9.
Patients suffering from multiple endocrine neoplasia type 1 (MEN1) are predisposed to multiple endocrine tumors. The MEN1 gene product, menin, is expressed in many embryonic, as well as adult tissues, and interacts with several proteins in vitro and in vivo. However, the biological function of menin remains largely unknown. Here we show that disruption of the Men1 gene in mice causes embryonic lethality at E11.5-E13.5. The Men1 null mutant embryos appeared smaller in size, frequently with body haemorrhages and oedemas, and a substantial proportion of them showed disclosure of the neural tube. Histological analysis revealed an abnormal development of the nervous system and heart hypotrophy in some Men1 null embryos. Furthermore, Men1 null livers generally displayed an altered organization of the epithelial and hematopoietic compartments associated with enhanced apoptosis. Chimerism analysis of embryos generated by injection of Men1 null ES cells, showed that cells lacking menin do not seem to have a general cell-autonomous defect. However, primary Men1 null embryonic fibroblasts entered senescence earlier than their wild-type counterparts. Despite normal proliferation ability, Men1 null ES cells exhibited a deficiency to form embryoid bodies, suggesting an impaired differentiation capacity in these cells. The present study demonstrates that menin plays an important role in the embryonic development of multiple organs in addition to its proposed role in tumor suppression.  相似文献   

10.
PINCH1, an adaptor protein composed of five LIM domains, mediates protein-protein interactions and functions as a component of the integrin-integrin-linked kinase (ILK) complex. The integrin-ILK signaling complex plays a pivotal role in cell motility, proliferation, and survival during embryonic development of many animal species. To elucidate the physiological function of PINCH1 in mouse embryonic development, we have deleted the mouse PINCH1 gene by homologous recombination. Mice heterozygous for PINCH1 are viable and indistinguishable from wild-type littermates. However, no viable homozygous offspring were observed from PINCH1+/- intercrosses. Histological analysis of homozygous mutant embryos revealed that they had a disorganized egg cylinder by E5.5, which degenerated by E6.5. Furthermore, E5.5 PINCH1-/- embryos exhibited decreased cell proliferation and excessive cell death. We have also generated and analyzed mice in which PINCH1 has been specifically deleted in ventricular cardiomyocytes. These mice exhibit no basal phenotype, with respect to mouse survival, cardiac histology, or cardiac function as measured by echocardiography. Altogether, these data indicate that PINCH1 plays an essential role in early murine embryonic development but is dispensable in ventricular cardiomyocytes.  相似文献   

11.
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominantly inherited syndrome characterized by parathyroid, gastro-entero-pancreatic and anterior pituitary tumors. Although the tissue selectivity of tumors in specific endocrine organs is the very essence of MEN1, the mechanisms underlying the tissue-selectivity of tumors remain unknown. The product of the Men1 gene, menin, and mixed lineage leukemia (MLL) have been found to cooperatively regulate p27(Kip1)/CDKN1B (p27) and p18(Ink4C)/CDKN2C (p18) genes. However, there are no reports on the tissue distribution of these MEN1-related genes. We investigated the expression of these genes in the endocrine and non-endocrine organs of wild-type, Men1 knockout and MLL knockout mice. Men1 mRNA was expressed at a similar level in endocrine and non-endocrine organs. However, MLL, p27 and p18 mRNAs were predominantly expressed in the endocrine organs. Notably, p27 and MLL mRNAs were expressed in the pituitary gland at levels approximately 12- and 17-fold higher than those in the liver. The heterozygotes of Men1 knockout mice the levels of MLL, p27 and p18 mRNAs did not differ from those in the wild-type mice. In contrast, heterozygotes of MLL knockout mice showed significant reductions in p27 mRNA as well as protein levels in the pituitary and p27 and p18 in the pancreatic islets, but not in the liver. This study demonstrated for the first time the predominant expression MEN1-related genes, particularly MLL and p27, in the endocrine organs, and a tissue-specific haploinsuffiency of MLL, but not menin, may lead to a decrease in levels of p27 and p18 mRNAs in endocrine organs. These findings may provide basic information for understanding the mechanisms of tissue selectivity of the tumorigenesis in patients with MEN1.  相似文献   

12.
13.
14.
The myb gene family has three members, c-myb, A-myb, and B-myb, which have distinct expression patterns. Analyses of c-myb and A-myb mutant mice have indicated that c-myb and A-myb are important for hematopoiesis and spermatogenesis, respectively. However, there has been no evidence for a role for B-myb in development. To examine the role of B-myb in development, we generated B-myb-deficient mice by gene targeting. Although the heterozygous mutants were healthy, the homozygous mutants died at an early stage of development, around E4. 5-E6.5. In vitro culture of blastocyst indicated that B-myb is required for inner cell mass formation. Consistent with the important role of B-myb in early embryonic development, only B-myb among myb family members was expressed in embryonic stem cells. These results indicate that each of the three members of the myb gene family plays a distinct role during development.  相似文献   

15.
16.
The Wilms tumor suppressor gene wt1 is required for development of the spleen.   总被引:14,自引:0,他引:14  
The Wilms tumor suppressor gene WT1 (wt1 in mouse) is unique among tumor suppressors because, in addition to its involvement in cancer [1] [2] and various other diseases [3] [4] [5] [6], it has an essential role in the development of certain organs. This is revealed by the phenotype of mice with inactivated wt1 alleles [7]. These animals exhibit a complete failure of kidney and gonad development as well as abnormalities of the heart and mesothelial structures. On a C57BL/6 genetic background, wt1(-/-) animals die between day 13.5 (E13.5) and 15.5 (E15.5) of embryonic development [7]. We report here that crossing of the wt1 mutation onto different mouse backgrounds delayed embryonic lethality until birth. In wt1(-/-) mice on these different genetic backgrounds, we observed a dramatic failure of spleen development, in addition to the well characterized phenotypic abnormalities. The spleen anlage formed at around E12 to E13 and involuted by the E15 stage, before the invasion of hematopoietic cells. The absence of proper spleen development in these wt1(-/-) embryos correlated with enhanced apoptosis in the primordial spleen cells. The expression of hox11, a gene that also controls development of the spleen [8] [9], was not altered by the inactivation of wt1. In situ hybridization revealed that the two genes are regulated independently. These findings demonstrate that the penetrance of the wt1(-/-) phenotype depends on the existence of one or more modifier gene(s) and that wt1 plays a pivotal role in the development of the spleen, thereby extending its role in organogenesis.  相似文献   

17.
18.
19.
Surveillance and repair of DNA damage are essential for maintaining the integrity of the genetic information that is needed for normal development. Several multienzyme pathways, including the excision repair of damaged or missing bases, carry out DNA repair in mammals. We determined the developmental role of the X-ray cross-complementing (Xrcc)-1 gene, which is central to base excision repair, by generating a targeted mutation in mice. Heterozygous matings produced Xrcc1-/- embryos at early developmental stages, but not Xrcc1-/- late-stage fetuses or pups. Histology showed that mutant (Xrcc1-/-) embryos arrested at embryonic day (E) 6.5 and by E7.5 were morphologically abnormal. The most severe abnormalities observed in mutant embryos were in embryonic tissues, which showed increased cell death in the epiblast and an altered morphology in the visceral embryonic endoderm. Extraembryonic tissues appeared relatively normal at E6.5-7.5. Even without exposure to DNA-damaging agents, mutant embryos showed increased levels of unrepaired DNA strand breaks in the egg cylinder compared with normal embryos. Xrcc1-/- cell lines derived from mutant embryos were hypersensitive to mutagen-induced DNA damage. Xrcc1 mutant embryos that were also made homozygous for a null mutation in Trp53 underwent developmental arrest after only slightly further development, thus revealing a Trp53-independent mechanism of embryo lethality. These results show that an intact base excision repair pathway is essential for normal early postimplantation mouse development and implicate an endogenous source of DNA damage in the lethal phenotype of embryos lacking this repair capacity.  相似文献   

20.
The stability of many proteins is controlled by the ubiquitin proteolytic system, which recognizes specific substrates through the action of E3 ubiquitin ligases [1]. The SCFs are a recently described class of ubiquitin ligase that target a number of cell cycle regulators and other proteins for degradation in both yeast and mammalian cells [2] [3] [4] [5] [6]. Each SCF complex is composed of the core protein subunits Skp1, Rbx1 and Cul1 (known as Cdc53 in yeast), and substrate-specific adaptor subunits called F-box proteins [2] [3] [4]. To understand the physiological role of SCF complexes in mammalian cells, we generated mice carrying a deletion in the Cul1 gene. Cul1(-/-) embryos arrested around embryonic day 6.5 (E6.5) before the onset of gastrulation. In all cells of the mutant embryos, cyclin E protein, but not mRNA, was highly elevated. Outgrowths of Cul1(-/-) blastocysts had limited proliferative capacity in vitro and accumulated cyclin E in all cells. Within Cul1(-/-) blastocyst cultures, trophoblast giant cells continued to endocycle despite the elevated cyclin E levels. These results suggest that cyclin E abundance is controlled by SCF activity, possibly through SCF-dependent degradation of cyclin E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号