首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypotheses that larval fish density may potentially affect phytoplankton abundance through regulating zooplankton community structure, and that fish effect may also depend on nutrient levels were tested experimentally in ponds with three densities of larval walleye, Stizostedion vitreum (0, 25, and 50 fish m–3), and two fertilizer types (inorganic vs organic fertilizer). A significant negative relationship between larval fish density and large zooplankton abundance was observed despite fertilizer types. Larval walleye significantly reduced the abundances of Daphnia, Bosmina, and Diaptomus but enhanced the abundance of various rotifer species (Brachionus, Polyarthra, and Keratella). When fish predation was excluded, Daphnia became dominant, but Daphnia grazing did not significantly suppress blue-green algae. Clearly, larval fish can be an important regulator for zooplankton community. Algal composition and abundance were affected more by fertilizer type than by fish density. Inorganic fertilizer with a high N:P ratio (20:1) enhanced blue-green algal blooms, while organic fertilizer with a lower N:P ratio (10:1) suppressed the abundance of blue-green algae. This result may be attributed to the high density of blue-green algae at the beginning of the experiment and the fertilizer type. Our data suggest that continuous release of nutrients from suspended organic fertilizer at a low rate may discourage the development of blue-green algae. Nutrient inputs at a low N:P ratio do not necessarily result in the dominance of blue-green algae.  相似文献   

2.
To understand the impact of young-of-the-year (YOY) fish on food web dynamics and water quality, we stocked larval walleye (9 mm TL) (Stizostedion vitreum) in six experimental ponds using two fish densities (10 and 50 fish m–3) with three replicates. At high fish density, the average abundances of cladocerans and copepods and the Secchi depth were lower whereas abundances of rotifers and algae, gross primary productivity (GPP), pH and total phosphorus concentration were higher than at low fish density. Fish impact on bacterial abundance, dissolved oxygen, nitrogen and phosphorus concentrations, however, was not significant. The within treatment measurements of all variables except GPP were significantly different over time. Our results indicate that YOY walleye predation at high density can affect plankton community by reducing large zooplankton biomass and water clarity, and increasing phytoplankton abundance. The impact of YOY piscivorous fish on plankton should be considered when biomanipulation is applied for improvement of water quality.  相似文献   

3.
B. B. Jana 《Hydrobiologia》1978,61(2):135-143
Estimates of planktonic growth kinetics in relation to the thermal environment were made over a two year period in three hot springs and one cold one located in West Bengal, India. A very characteristic feature of the Saubhagya Kund (43–49°C) and Papahara (46–51°C) was the abundance of phytoplankton, always dominated by blue-green algae. This situation changed in the other two springs where zooplankton was an essential component. The determination of the species diversity index indicated that the graph of cumulative species of plankton versus logarithm of individuals was roughly linear in Saubhagya Kund and Papahara, whereas in the other two a logistic curve was the result. The seasonal distribution of Myxophyceae/Phytoplankton was dependant upon the annual phosphorous cycle (P < 0.0001) in all the thermal waters studied. That the population dynamics of diatoms responded inversely to the level of phosphate (P < 0.05) has been clearly manifested in Swetganga (37–46°C). The variation in the silicate content of the water throughout the year has been found responsible for the seasonal succession of diatoms in some of the waters (P < 0.001). The multiple correlation between phosphate, silicate, dissolved oxygen and pH and Myxophyceae/Phytoplankton was significant in the case of Papahara (P < 0.01) and Swetganga (P < 0.05). Similarly, the multiple correlation between these factors and Bacillariophyceae was significant in Saubhagya Kund (P < 0.01). In the non-thermal water Jibatsa Kund (22–39°C), the multiple correlation between these factors and Phytoplankton was, however, not significant (P > 0.05).  相似文献   

4.
Cascading Trophic Interactions in an Oligotrophic Species-poor Alpine Lake   总被引:1,自引:0,他引:1  
Non-native brook trout (Salvelinus fontinalis) were eradicated from alpine Bighorn Lake, Alberta, Canada, to test whether strong cascading trophic interactions (CTI) can occur in oligotrophic, high seston C:P, species-poor lakes. Fishless alpine Pipit Lake was used as a reference ecosystem. Bighorn Lake zooplankton biomass increased from 0.14:1 relative to Pipit Lake before fish removal began in 1997 to 0.6:1 afterwards due to an increase in the abundance of adult cyclopoid copepods beginning in 1997 and the reappearance of Daphnia middendorffiana in 1998. Following the reappearance of Daphnia, Bighorn Lake total phytoplankton biomass fell from 64:1 relative to Pipit Lake to 0.9:1. Over the same periods Bighorn Lake:Pipit Lake chlorophyll-a ratios declined from 2.4:1 to 1.6:1, although the decrease was not statistically significant. Mid-summer Secchi disc depth in Bighorn Lake increased from 3.1 m before manipulation to 9.2 m, the maximum depth of the lake, in 2001 and 2002. Increased transparency was most likely due to increased filtration of suspended inorganic particles from the water column by higher abundances of large zooplankton. Post-manipulation increases in dissolved inorganic nitrogen (DIN), DIN:total dissolved phosphorus (TDP) ratio and declines in TDP in Bighorn Lake were not attributable to ecosystem manipulation, similar changes were observed in reference Pipit Lake. We conclude that strong pelagic CTI, expressed as change in total phytoplankton biomass and largely mediated by Daphnia, can occur in oligotrophic, high seston C:P, species-poor ecosystems. However, strong CTI responses in phytoplankton biomass may lag trophic manipulation by several years.  相似文献   

5.
Limnological characteristics of six subtropical lakes were monitored to determine the factors which regulate chlorophyll α concentrations and phytoplankton standing crops. Most physical chemical variables showed non-significant differences with depth but differences between lakes often were large. Phytoplankton blooms occurred throughout the year and there were marked differences between the hypereutrophic and mesotrophic lakes in chlorophyll α concentrations, standing stocks, and dominant species. Densities of total zooplankton and rotifers in the hypereutrophic lakes were 3- to 6-fold greater than in the mesotrophic lakes. Regression models for chlorophyll α and total phytoplankton cell volume were calculated for each lake and for all lakes combined, but R2 values and numbers of shared variables tended to be low indicating the need for additional variables and more frequent sampling.  相似文献   

6.
微塑料作为一种新型的环境污染物,大量存在于水环境中,给水生生物带来了极大的危害.浮游生物是水生食物链的基础,是水生生态系统物质循环和能量流动的重要环节;同时,浮游生物也是对各种环境污染物最敏感的类群.了解微塑料对浮游生物的影响是评价其生态风险的重要依据.本文介绍了环境中微塑料来源、特征及水生态系统微塑料污染现状,阐述了...  相似文献   

7.
Flores  L. Naselli  Barone  R. 《Hydrobiologia》1994,(1):197-205
The relationship between the trophic state of 21 Sicilian dam reservoirs and their taxonomic community structure of phytoplankton (87 taxa) as well as zooplankton (45 taxa) have been examined by means of cluster analysis performed using annual average biomass values. The phytoplankton community structure was closely connected with the trophic state of the reservoirs, whereas the zooplankton community structure was related to hydrological regimes peculiar to the individual water bodies and not to the trophic state.  相似文献   

8.
We evaluated the effect of a fish removal from a shallow, turbid, eutrophic lake. By late May (following an October fish removal), the cladoceran community shifted from small-bodiedBosmina andChydorus (less than 100 l−1) to largerDaphnia (over 100 l−1). During the periods of peak daphnid abundance (late May–June) chlorophyll-a concentrations and edible diatoms were reduced and water transparency improved dramatically. Total phosphorus was not significantly lowered during this period. Although this clear-water phase was short-lived (May, June and early July), it corresponded to the critical period of plant growth and allowed dramatic increases in submergent macrophytes.  相似文献   

9.
1. For 13 years the response of the plankton and fish community to a decline in external phosphorus loading was studied in eight lakes with a mean depth <5 m. We conducted chi‐square analyses of sign of slope (positive or negative) of bimonthly averages of plankton variables for the eight lakes versus time. For fish, we compared results from two periods, i.e. 1989–1994 versus 1994–2001 as less data were available. 2. Fish community structure tended to respond to the lowered concentration of total phosphorus (TP), although not all changes were significant. While catch per unit effort (multi‐mesh sized gill nets) of cyprinids (especially bream, Abramis brama and roach, Rutilus rutilus) was highest in the first 5‐year period, the quantitative importance particularly of perch (Perca fluviatilis), pike (Esox lucius) and rudd (Scardinius erythropthalmus), a littoral species, increased significantly after 1994. 3. No changes occurred in zooplankton biomass, except for an increase in November and December. Biomass of small cladocerans, however, declined during summer and autumn, and the proportion of Daphnia to cladoceran biomass also increased. Average body weight of Daphnia and that of all cladocerans increased. The proportion of calanoids among copepods decreased in summer and the average body weight of cyclopoids and calanoids decreased during summer and autumn/early winter. 4. Total biovolume of phytoplankton declined significantly in March to June and tended to decline in November and December as well, while no significant changes were observed during summer and autumn. Non‐heterocystous cyanobacteria showed a decreasing trend during summer and autumn, while heterocystous cyanobacteria increased significantly in late summer. An increase in late summer was also evident for cryptophytes and chrysophytes, while diatoms tended to decline during most seasons. 5. We conclude that phytoplankton, and probably also fish, responded rapidly to reduced loading, whereas the effect on zooplankton was less pronounced. However, increases in body weight of cladocerans and the zooplankton to phytoplankton biomass ratio during summer indicate reduced top‐down control on zooplankton and enhanced grazing on phytoplankton. This conclusion is supported by a tendency for fish biomass to decline and a shift towards greater dominance by piscivores and, thus, an increased likelihood of predator control of zooplanktivorous cyprinids.  相似文献   

10.
Although phosphorus fertilisation can improve productivity in most freshwater ponds, phosphate may become limiting in extremely hard water due to rapid precipitation with calcium. Hence we studied the characteristics of plankton and nutrient dynamics in water containing >400 mg CaCO3 l–1in pond and microcosm systems. The field experiment was conducted in eight earthen ponds involving two nutrient ratios (N:P = 1:1 and 20:1) with or without crayfish. Fertilisation significantly increased concentrations of NO2–N and NO3–N, but soluble reactive phosphorus was depleted to the level prior to fertilisation within 24 h. The laboratory test showed that after 6 h of fertilisation, 45% phosphorus was precipitated by calcium, 30% phosphorus was assimilated by phytoplankton and only 25% phosphorus remained in water column. The phytoplankton abundance in hardwater ponds was regulated by the abundance of zooplankton population rather than by either crayfish or fertilisation. The presence of crayfish only increased the concentration of total phosphorus. This study suggests that when phytoplankton production is required in crayfish ponds the maintenance of phytoplankton abundance will depend on the effective control of zooplankton rather than fertilisation. Due to the rapid precipitation of phosphorus by calcium in hard water ponds, more frequent phosphorus fertilisation is needed to enhance primary productivity.  相似文献   

11.
SUMMARY 1. The POTAMON model [Everbecq E. et al . (2001) Water Research , 35 , 901] has been used to simulate the effect of benthic bivalves (mainly Dreissena polymorpha ) on the phytoplankton and zooplankton in a lowland Western European river (the Moselle). Here we use a modified version of the POTAMON model with five categories of phytoplankton ( Stephanodiscus , Cyclotella -like, large diatoms, Skeletonema and non-siliceous algae) to model filter-feeding effects of benthic bivalves in the Moselle. Zooplankton has been represented in the model by two categories, Brachionus -like and Keratella -like rotifers.
2. According to density estimates from field surveys (Bachmann V. et al . (1995) Hydroécologie Appliquée , 7 , 185, Bachmann V. & Usseglio-Polatera P. (1999) Hydrobiologia , 410 , 39), zebra mussel density varied among river stretches, and increased through the year to a maximum in summer. Dreissena filtration rates from the literature were used, and mussels have been assumed to feed on different phytoplankton categories (but less on large and filamentous diatoms) as well as on rotifers.
3. The simulations suggest a significant impact of benthic filter-feeders on potamoplankton and water quality in those stretches where the mussels are abundant, their impact being maximal in summer. Consequently, different plankton groups were not affected to the same extent, depending on their period of development and on indirect effects, such as predation by mussels on herbivorous zooplankton.
4. A daily carbon balance for a typical summer shows the effect of benthic filter-feeders on planktonic and benthic processes: the flux of organic matter to the bottom is greatly enhanced at high mussel density; conversely, production and breakdown of organic carbon in the water column are reduced. Mussel removal would drive the carbon balance of the river toward autotrophy only in the downstream stretches.  相似文献   

12.
The relationship between physicochemical factors and plankton abundance in the newly created Bui reservoir was studied during 2011 and 2012. The objective was to assess the influence of physicochemical factors on plankton abundance and provide data for monitoring the hydrobiology of the newly created Bui reservoir. Two sampling stations were selected on the Black Volta upstream (Bui) and downstream (Bamboi) of the dam, with samples taken pre‐ and postimpoundment during the study period. Canonical Correspondence Analysis (CCA) was used to trace temporal plankton community changes and to examine the relationships between species composition and physicochemical variables. The relative abundance of some phytoplankton species such as Anabaena sp., Planktothrix sp. and Scenedesmus sp. was directly correlated to nitrates. CCA indicated that physicochemical variables explained 41–64% of zooplankton and 8–12% of phytoplankton variation. Hence, there were correlations between environmental variables and the structure of plankton assemblages. This feature should therefore be used for bio‐monitoring of environmental variables of the river by the Bui Power Authority to ensure protection of the aquatic biota downstream of the Bui dam.  相似文献   

13.
Gophen  Moshe 《Hydrobiologia》1990,(1):1-11
Contaminants discharged to an estuary usually become associated with the near surface brackish waters and on an ebb tide these waters form a plume which streams away from the estuary mouth. As the plume mixes downwards, a localised region of minimum dilution may form at the sea-bed, depending on the rates of transverse and vertical mixing.A modelling study of the outflow from the Tees estuary suggests that regions of minimum dilution at the sea-bed could occur between 1.5 and 4.0 km from the estuary mouth, the latter corresponding to a tide of spring range. An estimate for the Humber outflow on a spring tide indicates that a similar impact region could occur at a distance of some 9 km from the entrance to the estuary. At the Tyne and Wear estuaries, the vertical mixing of contaminants is likely to be too slow for the regions of minimum dilution to form before the discharge plumes are cut off from the estuary mouths by the reversal of tidal flow.  相似文献   

14.
Sommer U  Sommer F  Feuchtmayr H  Hansen T 《Protist》2004,155(3):295-304
We used marine phytoplankton from mesocosms seeded with different zooplankton densities to study the impact of mesozooplankton on phytoplankton nutrient limitation. After 7 d of grazing (copepod mesocosms) or 9 d (appendicularian mesocosms) phytoplankton nutrient limitation was studied by enrichment bioassays. After removal of mesozooplankton, bioassay bottles received either no nutrients, phosphorus or nitrogen alone, or a combination of nitrogen and phosphorus and were incubated for 2 d. Phytoplankton reproductive rates in the bottles without nutrient addition were calculated after correction for grazing by ciliates and indicated increasing nitrogen limitation with increasing copepod abundance. No nutrient limitation was found in the appendicularian mesocosms. The increase of nutrient limitation with increasing copepod density seems to be mainly the result of a trophic cascade effect: Copepods released nanoplankton from ciliate grazing pressure, and thereby enhanced nitrogen exhaustion by nanophytoplankton and reduced nitrogen excretion by ciliates. Nitrogen sequestration in copepod biomass, the mechanism predicted by the ecological stoichiometry theory, seems to have been a weaker effect because there was only little copepod growth during the experiment.  相似文献   

15.
Comments on a recently described moorable, automated plankton sampler are given, mainly because it was designed to capture large zooplankton. However, the need for automatic devices for sampling phyto- and zooplankton is stressed. A new design for such a device is presented. A preliminary test was made using standard continuous-flow (auto-analyser) equipment, a cultured flagellate and formalin as a fixative.  相似文献   

16.
Summary

An overview of a three year study of abundance, community structure and succession of zooplankton and phytoplankton in relation to physical limnological conditions in Lakes Midmar and Albert Falls is presented, along with findings on zooplankton from a nine month study of Lake Nagle. Physical stability increased between Midmar (mean summer N2 = 6.55 × 104 s2) and Albert Falls (N2 = 8.70 × 104 s2), in line with elevations in water temperature. Phytoplankton richness and diversity was similar in these reservoirs, although zooplankton species richness increased downstream. Abundance levels of both phyto- and zoo-plankton were broadly comparable in these two reservoirs. In Midmar and Albert Falls, overall mean (± SD) chlorophyll levels were 3.60 ± 1.54 and 3.41 ± 1.41 μg 11, with corresponding overall average zooplankton standing stocks of 0.85 and 0.76 g m2 dry mass, dropping to 0.54 g m2 in Nagle (for which spring to midsummer data are missing).

Ruderal and colonist phytoplankters were persistently dominant both in Midmar and Albert Falls, in keeping with the continuous (if incomplete) mixing patterns evident in these reservoirs. Few stress tolerant algae occurred. The summer ruderal assemblage was unexpectedly dominated by diatoms in the physically more stable conditions of Albert Falls, but not Midmar. Mean zooplankton grazer-induced instantaneous mortality rates for planktonic algae for the whole study were estimated (by regression predictions) as 0.17 d1 in both lakes. Phytoplankton was not studied in Nagle.

Changes in zooplankton community structure between Midmar and Nagle largely involved progressive increases in the contribution of smaller-bodied cladocerans (comprising both sequentially smaller species of Daphnia (D. pulex, D. longispina, D. laevis), and additional genera such as Diaphanosoma, Ceriodapnia, Moina and Bosmina). As with a parallel progressive switch between Metadiaptomus meridianus and Tropodiaptomus spectabilis over this series of reservoirs, (and the temporal separation of “co-existing” populations in Albert Falls), which has been shown experimentally to be strongly temperature-linked, changes in absolute temperature are implicated as a primary causal factor in the shifts in cladoceran species composition. Temporal occurrences of these species also indicate the primacy of temperature.  相似文献   

17.
18.
Williams  Adrian E.  Moss  Brian 《Hydrobiologia》2003,491(1-3):331-346
Thirty-six enclosures, surface area 4 m2, were placed in Little Mere, a shallow fertile lake in Cheshire, U.K. The effects of different fish species (common carp, common bream, tench and roach) of zooplanktivorous size, and their biomass (0, 200 and 700 kg ha–1) on water chemistry, zooplankton and phytoplankton communities were investigated. Fish biomass had a strong effect on mean zooplankton size and abundance. When fish biomass rose, larger zooplankters were replaced by more numerous smaller zooplankters. Consequently phytoplankton abundance rose in the presence of higher densities of zooplanktivorous fish, as zooplankton grazing was reduced. Fish species were also significant in determining zooplankton community size structure. In enclosures with bream there were significantly greater densities of small zooplankters than in enclosures stocked with either carp, tench and, in part, roach. When carp or roach were present, the phytoplankton had a greater abundance of Cyanophyta than when bream or tench were present. Whilst top-down effects of fish predation controlled the size partitioning of the zooplankton community, this, in turn apparently controlled the bottom-up regeneration of nutrients for the phytoplankton community. At the zooplankton–phytoplankton interface, both top-down and bottom-up processes were entwined in a reciprocal feedback mechanism with the extent and direction of that relationship altered by changes in fish species. This has consequences for the way that top-down and bottom-up processes are generalised.  相似文献   

19.
Lyche  Anne  Faafeng  Bjørn A.  Brabrand  Åge 《Hydrobiologia》1990,(1):251-261

The predictability of plankton response to reductions of planktivorous fish was investigated by comparing the plankton community in three biomanipulated lakes and ten unmanipulated lakes differing in intensity of fish predation. Data collected on total phosphorus, phytoplankton and zooplankton biomass and share of cyanobacteria and large grazers, as well as specific growth rate of phytoplankton, were further used to test some of the proposed underlying response-mechanisms. In the biomanipulated lakes the algal biomass and share of cyanobacteria decreased, specific growth rate of phytoplankton increased, and zooplankton biomass and share of large grazers increased or remained unchanged. This pattern was largely reflected in the differences in food-chain structure between the unmanipulated lakes with highversus those with low fish predation. The qualitative response to planktivorous fish reduction thus seems largely predictable. The biomanipulated lakes differed, however, in magnitude of response: the smallest hypertrophic, rotenone-treated lake (Helgetjern) showed the most dramatic response, whereas the large, deep mesotrophic lake (Gjersjøen), which was stocked with piscivorous fish, showed more moderate response, probably approaching a new steady state. These differences in response magnitude may be related to different perturbation intensity (rotenone-treatmentversus stocking with piscivores), food-chain complexity and trophic state. Both decreased phosphorus concentration and increased zooplankton grazing are probably important mechanisms underlying plankton response to biomanipulation in many lakes. The results provide tentative support to the hypothesis that under conditions of phosphorus limitation, increased zooplankton grazing can decrease algal biomassvia two separate mechanisms: reduction of the phosphorus pool in the phytoplankton, and reduction of the internal C:P-ratio in the phytoplankton cells.

  相似文献   

20.
The limnology of Mazvikadei Reservoir, northern Zimbabwe, was investigated in 2015 to determine whether it had changed since filling in 1990. The reservoir is characterised by low algal biomass, low nutrients (i.e. N and P) and high water clarity/transparency. Fifty-four species of phytoplankton were recorded, comprising Bacillariophyta, Chlorophyta, Cyanophyta, Desmids, Dinophyta and Euglenophyta. Chlorophyta numerically dominated in the hot dry season, whereas Bacillariophyta, Desmids, Dinophyta and Euglenophyta dominated in the cool dry season. Species richness was highest at the onset of the cool dry season, in response to high nutrient concentrations. Phytoplankton abundance and composition were significantly correlated with temperature, nitrates and total nitrogen. Nineteen zooplankton species were recorded, including Copepoda, Cladocera and Rotifera. Overall, Cladocera were numerically dominant and became most abundant during the cool dry season. Rotifers and copepods dominated during the hot dry season. The zooplankton abundance was correlated with reactive phosphorus and phytoplankton abundance. The trophic state of Mazvikadei Reservoir seems to have stabilised and to have assumed the physico-chemical characteristics and plankton community typical of an oligotrophic lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号