首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Communities of archaea, bacteria, and fungi were examined in forest soils located in the Oregon Coast Range and the inland Cascade Mountains. Soils from replicated plots of Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) were characterized using fungal ITS (internal transcribed spacer region), eubacterial 16S rRNA, and archaeal 16S rRNA primers. Population size was measured with quantitative (Q)-PCR and composition was examined using length heterogeneity (LH)-PCR for fungal composition, terminal restriction fragment length (T-RFLP) profiles for bacterial and archaeal composition, and sequencing to identify dominant community members. Whereas fungal and archaeal composition varied between sites and dominant tree species, bacterial communities only varied between sites. The abundance of archaeal gene copy numbers was found to be greater in coastal compared to montane soils accounting for 11% of the prokaryotic community. Crenarchaea groups 1.1a-associated, 1.1b, 1.1c, and 1.1c-associated were putatively identified. A greater abundance of Crenarchaea 1.1b indicator fragments was found in acidic (pH 4) soils with low C:N ratios under red alder. In coastal soils, 25% of fungal sequences were putatively identified as basidiomycetous yeasts belonging to the genus Cryptococcus. Although the function of these yeasts in soil is not known, they could significantly contribute to decomposition processes in coastal soils distinguished by rapid tree growth, high N content, low pH, and frequent water-saturation events.  相似文献   

2.
Fertiliser application can not only influence plant communities, but also the soil microbial community dynamics, and consequently soil quality. Specifically, mineral fertilisation can directly or indirectly affect soil chemical properties, microbial abundance and, the structure and diversity of soil microbial communities. We investigated the impact of six different mineral fertiliser regimes in a maize/soybean rotation system: control (CK, without fertilisation), PS (application of phosphorus plus sulphur), NS (application of nitrogen plus S), NP (application of N plus P), NPS (application of N, P plus S) and NPSm (application of N, P, S plus micronutrients). Soil samples were collected at the physiological maturity stage of maize and soybean in March of 2013 and 2014, respectively. Overall, mineral fertilisation resulted in significantly decreased soil pH and increased total organic carbon compared with the control (CK). The analysis of terminal restriction fragment length polymorphism (T‐RFLP) revealed that mineral fertilisers caused a shift in the composition of both bacterial and fungal communities. In 2013, the highest value of Shannon diversity of bacterial terminal restriction fragments (TRFs) was found in control soils. In 2014, NPSm treated soils showed the lowest values of diversity for both bacterial and fungal TRFs. In both crop growing seasons, the analysis of phospholipid fatty acid (PLFA) detected the lowest value of total microbial biomass under CK. As PLFA analysis can be used to evaluate total microbial community, this result suggests that fertilisation increased total microbial biomass. When the bacterial and fungal abundance were examined using real time polymerase chain reaction, the results revealed that mineral fertilisation led to decreased bacterial abundance (16S rRNA), while fungal abundance (18S rRNA) was found to be increased in both crop growing seasons. Our results show that mineral fertiliser application has a significant impact on soil properties, bacterial and fungal abundance and microbial diversity. However, further studies are needed to better understand the mechanisms involved in the changes to microbial communities as a consequence of mineral fertilisation.  相似文献   

3.
The effect of freeze-thaw (FT) cycles on Arctic tundra soil bacterial community was studied in laboratory microcosms. FT-induced changes to the bacterial community were followed over a 60-day period by terminal restriction fragment length polymorphism (T-RFLP) profiles of amplified 16S rRNA genes and reverse transcribed 16S rRNA. The main phylotypes of the active, RNA-derived bacterial community were identified using clone analysis. Non-metric multidimensional scaling ordination of the T-RFLP profiles indicated some shifts in the bacterial communities after three to five FT cycles at −2, −5, and −10°C as analyzed both from the DNA and rRNA. The dominating T-RFLP peaks remained the same, however, and only slight variation was generally detected in the relative abundance of the main T-RF sizes of either DNA or rRNA. T-RFLP analysis coupled to clone analysis of reverse transcribed 16S rRNA indicated that the initial soil was dominated by members of Bacteroidetes, Acidobacteria, Alpha-, Beta-, and Gammaproteobacteria. The most notable change in the rRNA-derived bacterial community was a decrease in the relative abundance of a Betaproteobacteria-related phylotype after the FT cycles. This phylotype decreased, however, also in the control soil incubated at constant +5°C suggesting that the decrease was not directly related to FT sensitivity. The results indicate that FT caused only minor changes in the bacterial community structure.  相似文献   

4.
To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon–Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon–Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.  相似文献   

5.
Bacterial community structure was studied in humus and mineral soils of evergreen broad-leaved forests in Ailaoshan and Xishuangbanna, representing subtropical and tropical ecosystems, respectively, in south-west China using sequence analysis and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Clone sequences affiliated to Acidobacteria were retrieved as the predominant bacterial phylum in both forest soils, followed by those affiliated to members of the Proteobacteria, Planctomycete and Verrucomicrobia. Despite higher floristic richness at the Xishuangbanna forest than at the Ailaoshan forest, soil at Xishuangbanna harbored a distinctly high relative abundance of Acidobacteria-affiliated sequences (80% of the total clones), which led to a lower overall bacterial diversity than at Ailaoshan. Bacterial communities in humus and mineral soils of the two forests appeared to be well differentiated, based on 16S rRNA gene phylogeny, and correlations were found between the bacterial T-RFLP community patterns and the organic carbon and nutrient contents of the soil samples. The data reveal that Acidobacteria dominate soil bacterial communities in the evergreen broad-leaved forests studied here and suggest that bacterial diversity may be influenced by soil carbon and nutrient levels, but is not related to floristic richness along the climatic gradient from subtropical to tropical forests in south-west China.  相似文献   

6.
The seasonal and spatial variations of microbial communities in Arctic fjelds of Finnish Lapland were studied. Phospholipid fatty acid analysis (PLFA) and terminal restriction fragment analysis (T-RFLP) of amplified 16S rRNA genes were used to assess the effect of soil conditions and vegetation on microbial community structures along different altitudes of two fjelds, Saana and Jehkas. Terminal restriction fragments were additionally analysed from c. 160 cloned sequences and isolated bacterial strains and matched with those of soil DNA samples. T-RFLP and PLFA analyses indicated relatively similar microbial communities at various altitudes and under different vegetation of the two fjelds. However, soil pH had a major influence on microbial community composition. Members of the phylum Acidobacteria dominated especially in the low pH soils (pH 4.6-5.2), but above pH 5.5, the relative amount of terminal restriction fragments corresponding to acidobacterial clones was substantially lower. Both T-RFLP and PLFA analysis indicated stable microbial communities as the DNA and fatty acid profiles were similar in spring and late summer samples sampled over 3 years. These results indicate that differences in microbial community composition could be explained primarily by variation in the bedrock materials that cause variation in the soil pH.  相似文献   

7.
The diversity and community structures of actinobacteria in saline sediments collected from Yunnan and Xinjiang Provinces, China, were investigated with cultivation and 16S rRNA gene analysis. A total of 163 actinobacterial isolates were obtained, and they were affiliated with the order Actinomycetales (distributed into five suborders: Streptosporangineae, Micrococcineae, Streptomycineae, Pseudonocardineae, and Glycomycineae). A total of 748 actinobacterial 16S rRNA gene clones were examined, and they could be classified into Actinomycetales, Acidimicrobiales, and unclassified actinobacteria. The Actinomycetales sequences were distributed into nine suborders: Streptosporangineae, Glycomycineae, Micromonosporineae, Pseudonocardineae, Corynebacterineae, Frankineae, Propionibacterineae, Streptomycineae, and Micrococcineae. The unclassified actinobacteria contained three new clusters at the level of subclass or order. Our 16S rRNA gene phylogenetic data indicated that actinobacterial communities were very diverse in the investigated saline sediments (salinity 0.4–11.6%) and some actinobacterial members may be halotolerant or halophilic. The actinobacterial community structures in the saline sediments were different from those in marine and freshwater environments. Our data have implications for a better understanding of the distribution of Actinobacteria in saline environments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The endophytic actinobacterial population in the roots of wheat grown in three different soils obtained from the southeast part of South Australia was investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of the amplified 16S rRNA genes. A new, validated approach was applied to the T-RFLP analysis in order to estimate, to the genus level, the actinobacterial population that was identified. Actinobacterium-biased primers were used together with three restriction enzymes to obtain terminal restriction fragments (TRFs). The TRFs were matched to bacterial genera by the T-RFLP Analysis Program, and the data were analyzed to validate and semiquantify the genera present within the plant roots. The highest diversity and level of endophytic colonization were found in the roots of wheat grown in a dark loam from Swedes Flat, and the lowest were found in water-repellent sand from Western Flat. This molecular approach detected a greater diversity of actinobacteria than did previous culture-dependent methods, with the predominant genera being Mycobacterium (21.02%) in Swedes Flat, Streptomyces (14.35%) in Red Loam, and Kitasatospora (15.02%) in Western Flat. This study indicates that the soil that supported a higher number of indigenous organisms resulted in wheat roots with higher actinobacterial diversity and levels of colonization within the plant tissue. Sequencing of 16S rRNA clones, obtained using the same actinobacterium-biased PCR primers that were used in the T-RFLP analysis, confirmed the presence of the actinobacterial diversity and identified a number of Mycobacterium and Streptomyces species.  相似文献   

9.
The impact of long-term organic and inorganic amendments on the actinobacterial community in soils was studied. Denaturing gradient gel electrophoresis patterns based on the V3 region of 16S rRNA suggested that there was no significant difference between the communities occurring in the different amendments. However, analysis of the clone libraries of the actinobacterial communities by the use of multiple statistical approaches showed that these communities were significantly different from each other. Results showed that long-term organic and inorganic soil amendments did not significantly alter the overall phylogenetic diversity of the actinobacterial communities but did significantly change the community structure.  相似文献   

10.

Aim

This study investigated the effects of environmental variables on the bacterial and fungal communities of the Beilu River (on the Tibetan Plateau) permafrost soils with different vegetation types.

Methods and Results

Microbial communities were sampled from meadow, steppe and desert steppe permafrost soils during May, June, August and November, and they were analysed by both pyrosequencing and the use of Biolog EcoPlates. The dominant bacterial and fungal phyla in meadow and steppe soils were Proteobacteria and Ascomycota, whereas Actinobacteria and Basidiomycota predominated in desert steppe soils. The bacterial communities in meadow soils degraded amines and amino acids very rapidly, while polymers were degraded rapidly by steppe communities. The RDA patterns showed that the microbial communities differed greatly between meadow, steppe and desert steppe, and they were related to variations in the soil moisture, C/N ratio and pH. A UniFrac analysis detected clear differences between the desert steppe bacterial community and others, and seasonal shifts were observed. The fungal UniFrac patterns differed significantly between meadow and steppe soils. There were significant correlations between the bacterial diversity (H′) and soil moisture (= 0·506) and C/N (= 0·527). The fungal diversity (Hf′) was significantly correlated with the soil pH (= 0·541).

Conclusion

The soil moisture, C/N ratio and pH were important determinants of the microbial community structure in Beilu River permafrost soils.

Significance and Impact of the Study

These results may provide a useful baseline for predicting the variation in microbial communities in response to climate changes.  相似文献   

11.
Actinobacteria are ubiquitous in soil, freshwater and marine ecosystems. Although various studies have focused on the microbial ecology of this phylum, data are scant on the ecology of actinobacteria endemic to hot springs. Here, we have investigated the molecular diversity of eubacteria, with specific focus on the actinobacteria in hot springs in Zambia, China, New Zealand and Kenya. Temperature and pH values at sampling sites ranged between 44.5 and 86.5?°C and 5-10, respectively. Non-metric multidimensional scaling analysis of 16S rRNA gene T-RFLP patterns showed that samples could be separated by geographical location. Multivariate analysis showed that actinobacterial community composition was best predicted by changes in pH and temperature, whereas temperature alone was the most important variable explaining differences in bacterial community structure. Using 16S rRNA gene libraries, 28 major actinobacterial OTUs were found. Both molecular techniques indicated that many of the actinobacterial phylotypes were unique and exclusive to the respective sample. Collectively, these results support the view that both actinobacterial diversity and endemism are high in hot spring ecosystems.  相似文献   

12.
The diversity and community structure of planktonic Actinobacteria in a freshwater river and five fresh/saline/hypersaline lakes on the Tibetan Plateau, China were investigated with a combination of geochemical and 16S rRNA gene phylogenetic analyses. A total of 387 actinobacterial 16S rRNA gene clones were sequenced, and they could be classified into Actinobacteridae, Acidimicrobidae, and unclassified Actinobacteria. The Actinobacteridae sequences were distributed into five suborders (e.g., Corynebacterineae, Frankineae, Micrococcineae, Propionibacterineae, and Streptosporangineae) and unclassified Actinobacteridae. Some actinobacterial members (specifically Micrococcineae) were present in a wide range of salinities (from freshwater to NaCl saturation). Statistical analysis showed that salinity and salinity-related environmental variables (such as ions and total nitrogen) significantly (r > 0.5; P < 0.05) influenced the distribution of planktonic actinobacterial community in the investigated aquatic biotopes. Our data have implications for a better understanding of the distribution of Actinobacteria in high-elevation lakes.  相似文献   

13.
To understand the distribution and diversity of archaea in Chinese soils, the archaeal communities in a series of topsoils and soil profiles were investigated using quantitative PCR, T-RFLP combining sequencing methods. Archaeal 16S rRNA gene copy numbers, ranging from 4.96?×?10(6) to 1.30?×?10(8) copies?g(-1) dry soil, were positively correlated with soil pH, organic carbon and total nitrogen in the topsoils. In the soil profiles, archaeal abundance was positively correlated with soil pH but negatively with depth profile. The relative abundance of archaea in the prokaryotes (sum of bacteria and archaea) ranged from 0.20% to 9.26% and tended to increase along the depth profile. T-RFLP and phylogenetic analyses revealed that the structure of archaeal communities in cinnamon soils, brown soils, and fluvo-aquic soils was similar and dominated by Crenarchaeota group 1.1b and 1.1a. These were different from those in red soils, which were dominated by Crenarchaeota group 1.3 and 1.1c. Canonical correspondence analysis indicated that the archaeal community was primarily influenced by soil pH.  相似文献   

14.
The diversity and composition of soil bacterial communities were compared among six Austrian natural forests, including oak-hornbeam, spruce-fir-beech, and Austrian pine forests, using terminal restriction fragment length polymorphism (T-RFLP, or TRF) analysis and sequence analysis of 16S rRNA genes. The forests studied differ greatly in soil chemical characteristics, microbial biomass, and nutrient turnover rates. The aim of this study was to relate these differences to the composition of the bacterial communities inhabiting the individual forest soils. Both TRF profiling and clone sequence analysis revealed that the bacterial communities in soils under Austrian pine forests, representing azonal forest types, were distinct from those in soils under zonal oak-hornbeam and spruce-fir-beech forests, which were more similar in community composition. Clones derived from an Austrian pine forest soil were mostly affiliated with high-G+C gram-positive bacteria (49%), followed by members of the α-Proteobacteria (20%) and the Holophaga/Acidobacterium group (12%). Clones in libraries from oak-hornbeam and spruce-fir-beech forest soils were mainly related to the Holophaga/Acidobacterium group (28 and 35%), followed by members of the Verrucomicrobia (24%) and the α-Proteobacteria (27%), respectively. The soil bacterial communities in forests with distinct vegetational and soil chemical properties appeared to be well differentiated based on 16S rRNA gene phylogeny. In particular, the outstanding position of the Austrian pine forests, which are determined by specific soil conditions, was reflected in the bacterial community composition.  相似文献   

15.
Although soil structure largely determines energy flows and the distribution and composition of soil microhabitats, little is known about how microbial community composition is influenced by soil structural characteristics and organic matter compartmentalization dynamics. A UV irradiation-based procedure was developed to specifically isolate inner-microaggregate microbial communities, thus providing the means to analyze these communities in relation to their environment. Whole- and inner-microaggregate fractions of undisturbed soil and soils reclaimed after disturbance by surface coal mining were analyzed using 16S rDNA terminal restriction fragment polymorphism (T-RFLP) and sequence analyses to determine salient bacterial community structural characteristics. We hypothesized that inner-microaggregate environments select for definable microbial communities and that, due to their sequestered environment, inner-microaggregate communities would not be significantly impacted by disturbance. However, T-RFLP analysis indicated distinct differences between bacterial populations of inner-microaggregates of undisturbed and reclaimed soils. While both undisturbed and reclaimed inner-microaggregate bacterial communities were found dominated by Actinobacteria, undisturbed soils contained only Actinobacteridae, while in inner-microaggregates of reclaimed soils Rubrobacteridae predominate. Spatial stratification of division-level lineages within microaggregates was also evidenced, with Proteobacteria clones being prevalent in libraries derived from whole microaggregates. The fractionation methods employed in this study therefore represent a valuable tool for defining relationships between biodiversity and soil structure.  相似文献   

16.
We investigated the microbial community structure and population size of arboreal soils—including canopy and bromeliad epiphytic leaf-tank soils—and ground soils in a tropical lowland rainforest in Costa Rica using molecular and cultivation methods. PCR-DGGE analysis of 16S rRNA and 18S rRNA gene fragments and quantitative real-time PCR were applied to survey the bacteria, ammonia-oxidizing bacteria (AOB), and fungi. Bacteria from epiphytic tank soils were isolated and identified. Bacillaceae, Pseudomonadaceae and Micrococcaceae were the most abundant families. According to cluster analysis of DGGE fingerprints a significant difference among the three soil types was evident for bacterial communities. In addition, the microbial communities of canopy and tank soils clustered apart from ground soils. The fungal and AOB communities were diverse but non-specific for the soil types analyzed.  相似文献   

17.
Glacier forefield chronosequences, initially composed of barren substrate after glacier retreat, are ideal locations to study primary microbial colonization and succession in a natural environment. We characterized the structure and composition of bacterial, archaeal and fungal communities in exposed rock substrates along the Damma glacier forefield in central Switzerland. Soil samples were taken along the forefield from sites ranging from fine granite sand devoid of vegetation near the glacier terminus to well-developed soils covered with vegetation. The microbial communities were studied with genetic profiling (T-RFLP) and sequencing of clone libraries. According to the T-RFLP profiles, bacteria showed a high Shannon diversity index (H) (ranging from 2.3 to 3.4) with no trend along the forefield. The major bacterial lineages were Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Cyanobacteria. An interesting finding was that Euryarchaeota were predominantly colonizing young soils and Crenarchaeota mainly mature soils. Fungi shifted from an Ascomycota-dominated community in young soils to a more Basidiomycota-dominated community in old soils. Redundancy analysis indicated that base saturation, pH, soil C and N contents and plant coverage, all related to soil age, correlated with the microbial succession along the forefield.  相似文献   

18.
The exploitation of soil ecosystem services by agricultural management strategies requires knowledge of microbial communities in different management regimes. Crop cover by no-till management protects the soil surface, reducing the risk of erosion and nutrient leaching, but might increase straw residue-borne and soilborne plant-pathogenic fungi. A cross-site study of soil microbial communities and Fusarium fungistasis was conducted on six long-term agricultural fields with no-till and moldboard-plowed treatments. Microbial communities were studied at the topsoil surface (0 to 5 cm) and bottom (10 to 20 cm) by general bacterial and actinobacterial terminal restriction fragment length polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) analyses. Fusarium culmorum soil fungistasis describing soil receptivity to plant-pathogenic fungi was explored by using the surface layer method. Soil depth had a significant impact on general bacterial as well as actinobacterial communities and PLFA profiles in no-till treatment, with a clear spatial distinction of communities (P < 0.05), whereas the depth-related separation of microbial communities was not observed in plowed fields. The fungal biomass was higher in no-till surface soil than in plowed soil (P < 0.07). Soil total microbial biomass and fungal biomass correlated with fungistasis (P < 0.02 for the sum of PLFAs; P < 0.001 for PLFA 18:2ω6). Our cross-site study demonstrated that agricultural management strategies can have a major impact on soil microbial community structures, indicating that it is possible to influence the soil processes with management decisions. The interactions between plant-pathogenic fungi and soil microbial communities are multifaceted, and a high level of fungistasis could be linked to the high microbial biomass in soil but not to the specific management strategy.  相似文献   

19.
20.
DNA restriction fragment polymorphism technologies such as amplified ribosomal DNA restriction analysis (ARDRA) and terminal restriction fragment length polymorphism (T-RFLP) have been widely used in investigating microbial community structures. However, these methods are limited due to either the low resolution or sensitivity. In this study, a fluorophore-ribosomal DNA restriction typing (f-DRT) approach is developed for structural profiling of microbial communities. 16S rRNA genes are amplified from the community DNA and digested by a single restriction enzyme Msp I. All restriction fragments are end-labeled with a fluorescent nucleotide Cy5-dCTP via a one-step extension reaction and detected with an automated DNA sequencer. All 50 predicted restriction fragments between 100 and 600 bp were detected when twelve single 16S rRNA gene sequences were analyzed using f-DRT approach; 92% of these fragments were determined with accuracy of ±2 bp. In the defined model communities containing five components with different ratios, relative abundance of each component was correctly revealed by this method. The f-DRT analysis also showed structural shifts of intestinal microbiota in carcinogen-treated rats during the formation of precancerous lesions in the colon, as sensitive as multiple digestion-based T-RFLP analysis. This study provides a labor and cost-saving new method for monitoring structural shifts of microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号